首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hierarchical Fe3O4@poly(4‐vinylpyridine‐co‐divinylbenzene)@Au (Fe3O4@P(4‐VP–DVB)@Au) nanostructures were fabricated successfully by means of a facile two‐step synthesis process. In this study, well‐defined core–shell Fe3O4@P(4‐VP–DVB) microspheres were first prepared with a simple polymerization method, in which 4‐VP was easily polymerized on the surface of Fe3O4 nanoparticles by means of strong hydrogen‐bond interactions between ? COOH groups on poly(acrylic acid)‐modified Fe3O4 nanoparticles and a 4‐VP monomer. HAuCl4 was adsorbed on the chains of a P(4‐VP) shell and then reduced to Au nanoparticles by NaBH4, which were embedded into the P(4‐VP) shell of the composite microspheres to finally form the Fe3O4@P(4‐VP–DVB)@Au nanostructures. The obtained Fe3O4@P(4‐VP–DVB)@Au catalysts with different Au loadings were applied in the reduction of 4‐nitrophenol (4‐NP) and exhibited excellent catalytic activity (up to 3025 h?1 of turnover frequency), facile magnetic separation (up to 31.9 emu g?1 of specific saturation magnetization), and good durability (over 98 % of conversion of 4‐NP after ten runs of recyclable catalysis and almost negligible leaching of Au).  相似文献   

2.
A protein imprinting approach for the synthesis of core–shell structure nanoparticles with a magnetic core and molecularly imprinted polymer (MIP) shell was developed using a simple distillation–precipitation polymerization method. In this work, Fe3O4 magnetic nanoparticles were first synthesized through a solvothermal method and then were conveniently surface‐modified with 3‐(methacryloyloxy)propyltrimethoxylsilane as anchor molecules to donate vinyl groups. Next a high‐density MIP shell was coated onto the surface of the magnetic nanoparticles by the copolymerization of functional monomer acrylamide (AAm), cross‐linking agent N,N′‐methylenebisacrylamide (MBA), the initiator azodiisobutyronitrile (AIBN), and protein in acetonitrile heated at reflux. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanoparticles were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and rebinding experiments. The resulting MIP showed a high adsorption capacity (104.8 mg g?1) and specific recognition (imprinting factor=7.6) to lysozyme (Lyz). The as‐prepared Fe3O4@Lyz‐MIP nanoparticles with a mean diameter of 320 nm were coated with an MIP shell that was 20 nm thick, which enabled Fe3O4@Lyz‐MIP to easily reach adsorption equilibrium. The high magnetization saturation (40.35 emu g?1) endows the materials with the convenience of magnetic separation under an external magnetic field and allows them to be subsequently reused. Furthermore, Fe3O4@Lyz‐MIP could selectively extract a target protein from real egg‐white samples under an external magnetic field.  相似文献   

3.
A novel antimicrobial nanohybrid based on near‐infrared (NIR) photothermal conversion is designed for bacteria capture, separation, and sterilization (killing). Positively charged magnetic reduced graphene oxide with modification by polyethylenimine (rGO–Fe3O4–PEI) is prepared and then loaded with core–shell–shell Au–Ag–Au nanorods to construct the nanohybrid rGO–Fe3O4–Au–Ag–Au. NIR laser irradiation melts the outer Au shell and exposes the inner Ag shell, which facilitates controlled release of the silver shell. The nanohybrids combine physical photothermal sterilization as a result of the outer Au shell with the antibacterial effect of the inner Ag shell. In addition, the nanohybrid exhibits high heat conductivity because of the rGO and rapid magnetic‐separation capability that is attributable to Fe3O4. The nanohybrid provides a significant improvement of bactericidal efficiency with respect to bare Au–Ag–Au nanorods and facilitates the isolation of bacteria from sample matrixes. A concentration of 25 μg mL?1 of nanohybrid causes 100 % capture and separation of Escherichia coli O157:H7 (1×108 cfu mL?1) from an aqueous medium in 10 min. In addition, it causes a 22 °C temperature rise for the surrounding solution under NIR irradiation (785 nm, 50 mW cm?2) for 10 min. With magnetic separation, 30 μg mL?1 of nanohybrid results in a 100 % killing rate for E. coli O157:H7 cells. The facile bacteria separation and photothermal sterilization is potentially feasible for environmental and/or clinical treatment.  相似文献   

4.
We report the controlled synthesis of exchange‐coupled face‐centered tetragonal (fct) FePd/α‐Fe nanocomposite magnets with variable Fe concentration. The composite was converted from Pd/Fe3O4 core/shell nanoparticles through a high‐temperature annealing process in a reducing atmosphere. The shell thickness of core/shell Pd/Fe3O4 nanoparticles could be readily tuned, and subsequently the concentration of Fe in nanocomposite magnets was controlled. Upon annealing reduction, the hard magnetic fct‐FePd phase was formed by the interdiffusion between reduced α‐Fe and face‐centered cubic (fcc) Pd, whereas the excessive α‐Fe remained around the fct‐FePd grains, realizing exchange coupling between the soft magnetic α‐Fe and hard magnetic fct‐FePd phases. Magnetic measurements showed variation in the magnetic properties of the nanocomposite magnets with different compositions, indicating distinct exchange coupling at the interfaces. The coercivity of the exchange‐coupled nanocomposites could be tuned from 0.7 to 2.8 kOe and the saturation magnetization could be controlled from 93 to 160 emu g?1. This work provides a bottom‐up approach using exchange‐coupled nanocomposites for engineering advanced permanent magnets with controllable magnetic properties.  相似文献   

5.
Fe3O4 nanoparticles were modified with pyridyl‐triazole ligand and the new magnetic solid was applied for the stabilization of very small and uniform gold nanoparticles. The resulting magnetic material, Fe3O4@PT@Au, was characterized using various methods. These gold nanoparticles on a magnetic support were applied as an efficient heterogeneous catalyst for the three‐component reaction of amines, aldehydes and alkynes (A3 coupling) in neat water with 0.01 mol% Au loading. Using magnetic separation, this catalyst could be recycled for seven consecutive runs with very small decrease in activity. Characterization of the reused catalyst did not show appreciable structural modification.  相似文献   

6.
1,2‐Diaminobenzene, popularly known as ortho‐phenylenediamine (PDA), is found to be a prototype spacer for the deposition of gold nanoparticles on the surfaces of Fe3O4 microspheres. Upon carbonization with PDA, the morphology of the product changes significantly, and the resulting nanocomposites exhibit enhanced magnetism beyond the saturation value of Fe3O4. The Fe3O4/Au nanocomposites show good surface‐enhanced Raman spectroscopy activity with a detection limit of 10?15 M .  相似文献   

7.
Hierarchical Fe3O4@SiO2@P(4VP‐DVB)@Au nanostructures were prepared in which the slightly cross‐linked, thin poly(4‐vinylpyridine‐co‐divinylbenzene) (P(4VP‐DVB)) shells were constructed onto Fe3O4@SiO2 nanospheres, followed by in situ embedding of gold nanocrystals homogeneously into the P4VP chains. These slightly cross‐linked chains, easily swollen by the reactants, make the gold nanocrystals accessible to the reactants, and the thin shell (about 15 nm) reduces the diffusion distance of the reactants to the active gold nanocrystals (about 5 nm), thereby enhancing their catalytic activity and utility. At the same time, confinement of gold nanocrystals within the P4VP shells prevents their migration and coagulation during catalytic transformations. Hence the nanocomposites exhibit high activity (up to 4369.5 h?1 of turnover frequency (TOF)) and controllable magnetic recyclability without any significant loss of gold species after ten runs of catalysis in the reduction of 4‐nitrophenol.  相似文献   

8.
A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres‐doped three‐dimensional (3D) graphene aerogel has been fabricated by a one‐pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5–10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate‐like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long‐term stability of 634 mA h g?1 over 1000 cycles at a high current density of 6 A g?1 (7 C), and an excellent rate capability of 413 mA h g?1 at 10 A g?1 (11 C), thus exhibiting great potential as an anode composite structure for durable high‐rate lithium‐ion batteries.  相似文献   

9.
Janus nanoparticles (JNPs) offer unique features, including the precisely controlled distribution of compositions, surface charges, dipole moments, modular and combined functionalities, which enable excellent applications that are unavailable to their symmetrical counterparts. Assemblies of NPs exhibit coupled optical, electronic and magnetic properties that are different from single NPs. Herein, we report a new class of double‐layered plasmonic–magnetic vesicle assembled from Janus amphiphilic Au‐Fe3O4 NPs grafted with polymer brushes of different hydrophilicity on Au and Fe3O4 surfaces separately. Like liposomes, the vesicle shell is composed of two layers of Au‐Fe3O4 NPs in opposite direction, and the orientation of Au or Fe3O4 in the shell can be well controlled by exploiting the amphiphilic property of the two types of polymers.  相似文献   

10.
《Electroanalysis》2017,29(3):765-772
Stable magnetic nanocomposite of gold nanoparticles (Au‐NPs) decorating Fe3O4 core was successfully synthesized by the linker of Boc‐L‐cysteine. Transmission electron microscope (TEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammograms (CV) were performed to characterize the as‐prepared Fe3O4@Au‐Nps. The results indicated that Au‐Nps dispersed homogeneously around Fe3O4 with the ratio of Au to Fe3O4 nanoparticles as 5–10/1 and the apparent electrochemical area as 0.121 cm2. After self‐assembly of hemoglobin (Hb) on Fe3O4@Au‐Nps by electrostatic interaction, a hydrogen peroxide biosensor was developed. The Fe3O4@Au‐Nps/Hb modified GCE exhibited fast direct electron transfer between heme center and electrode surface with the heterogeneous electron transfer rate constant (Ks ) of 3.35 s−1. Importantly, it showed excellent electrocatalytic activity towards hydrogen peroxide reduction with low detection limit of 0.133 μM (S /D =3) and high sensitivity of 0.163 μA μM−1, respectively. At the concentration evaluated, the interfering species of glucose, dopamine, uric acid and ascorbic acid did not affect the determination of hydrogen peroxide. These results demonstrated that the introduction of Au‐Nps on Fe3O4 not only stabilized the immobilized enzyme but also provided large surface area, fast electron transfer and excellent biocompatibility. This facile nanoassembly protocol can be extended to immobilize various enzymes, proteins and biomolecules to develop robust biosensors.  相似文献   

11.
In this study, the poly(NIPAAm–MAA)/Fe3O4 hollow latex particles were synthesized by three steps. The first step was to synthesize the poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first step, the second step was to polymerize N‐isopropylacrylamide (NIPAAm), MAA, and crosslinking agent (N,N'‐methylene‐bisacrylamide (MBA)) in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly (NIPAAm‐MAA) core‐shell latex particles. After the previous processes, the core‐shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core in order to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, Fe2+ and Fe3+ ions were introduced to bond with the ? COOH groups of MAA segments in the poly(NIPAAm‐MAA) hollow polymer latex particles. Further by a reaction with NH4OH and then Fe3O4 nanoparticles were generated in situ and the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles were formed. The concentrations of MAA, crosslinking agent (N,N'‐methylene bisacrylamide), and Fe3O4 nanoparticles were important factors to influence the morphology of hollow latex particles and lower critical solution temperature of poly(NIPAAm–MAA)/Fe3O4 magnetic composite hollow latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
以共沉淀法制备出Fe3O4纳米粒子,通过聚乙烯亚胺(PEI)修饰Fe3O4纳米粒子,再原位复合上Au纳米粒子,制得Fe3O4/PEI/Au纳米颗粒微球。再将Fe3O4/PEI/Au纳米颗粒与巯基乙酸修饰的量子点CdSe/CdS连接,成功制备了Fe3O4/PEI/Au@CdSe/CdS多功能复合微球。经过傅里叶变换红外光谱仪(FTIR)、荧光分光光度计、荧光显微镜、X射线衍射(XRD)、透射电子显微镜(TEM)及振动样品磁强计(VSM)的表征。结果表明:多功能复合微球的粒径在40 nm左右,具有超顺磁性,剩磁,矫顽力近似等于零,饱和磁化强度为28.83 A·m2·kg-1,同时兼有优越的荧光性能和金纳米粒子的特性。  相似文献   

13.
The present paper reports the preparation of poly (3,4‐ethylenedioxythiophene) (PEDOT) ferrimagnetic conducting polymer composite by incorporation of ferrite particles in the polymer matrix by emulsion polymerization. Synthesis of PEDOT–γ‐Fe2O3 composite was carried out by chemical oxidative polymerization of EDOT with ferrite particles in the presence of dodecylbenzenesulfonic acid (DBSA) that works as dopant as well as surfactant in aqueous medium. The resulting conducting composite possesses saturation magnetization (Ms) value of 20.56 emu/g with a conductivity of 0.4 Scm?1, which was determined by VSM and four probe technique, respectively. B‐H curve reveals that ferrimagnetic particles of γ‐Fe2O3 show super‐paramagnetic behavior at room temperature which was also observed in PEDOT–γ‐Fe2O3 composite. The resulting conducting ferrimagnetic composite shows microwave absorption loss of 18.7–22.8 dB in the frequency range of 12.4–18 GHz. Thermogravimetric analysis of the composite revealed that the composite is thermally stable up to 230°C. The characterization of the PEDOT–γ‐Fe2O3 composite was carried out using XRD and FTIR spectroscopy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A new heterogeneous catalyst derived from gold (III) and supported on caffeine‐coated magnetic nanoparticles, Fe3O4@Caff‐Au, has been prepared and characterized using different techniques. This magnetic gold composite shows high catalytic activity in A3 coupling reactions of terminal alkynes, aldehydes and secondary amines. Using this green catalyst, propargylamines are obtained in high turnover frequency in short reaction times using water as solvent at room temperature. This stable and ready accessible catalyst can be easily recycled magnetically for at least nine consecutive runs without significant loss of activity and with slight aggregation of Au species.  相似文献   

15.
A novel Prussian blue (PB)‐Fe3O4 composite has been prepared for the first time by self‐template method using PB as the precursor. According to this method, Fe3O4 nanoparticles distributed uniformly on the surface of PB cube. The feed ratio of sodium acetate to PB has been proved to be a key factor for magnetic properties and electro‐catalysis properties of the composite. Under the experimental conditions, the saturation magnetization value (Ms) of PB‐Fe3O4–2 composite was 22 emug?1, while the Ms value of other samples reduced. The composites also showed a good peroxidase‐like activity for the oxidation of substrate 3,3,5,5‐tetramethylbenzidine (TMB) in the presence of H2O2. The catalytic reduction of hydrogen peroxide capacity was PB‐Fe3O4–1> PB‐Fe3O4–2> PB‐Fe3O4–3> PB‐Fe3O4–0, which confirmed the Fe(II) centres in PB surface and Fe3O4 nanoparticles had synergistic effect on catalytic reduction of hydrogen peroxide.  相似文献   

16.
In this study, the poly(N‐isopropylacrylamide‐methylacrylate acid)/Fe3O4/poly(N‐isopropylacrylamide‐methylacrylate acid) (poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA)) two‐shell magnetic composite hollow latex particles were synthesized by four steps. The poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles were synthesized first. Then, the second step was to polymerize NIPAAm, MAA, and crosslinking agent in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly(NIPAAm‐MAA) core–shell latex particles. Then, the core–shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, the Fe3O4 nanoparticles were generated in the presence of poly(NIPAAm‐MAA) hollow polymer latex particles and formed the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles. The fourth step was to synthesize poly(NIPAAm‐MAA) in the presence of poly(NIPAAm‐MAA)/Fe3O4 latex particles to form the poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA) two‐shell magnetic composite hollow latex particles. The effect of various variables such as reactant concentration, monomer ratio, and pH value on the morphology and volume‐phase transition temperature of two‐shell magnetic composite hollow latex particles was studied. Moreover, the latex particles were used as carriers to load with caffeine, and the caffeine‐loading characteristics and caffeine release rate of latex particles were also studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2880–2891  相似文献   

17.
Fe3O4 nanoparticles were indirectly implanted onto functionalized multi‐walled carbon nanotubes (MWCNTs) leading to a nanocomposite with stronger magnetic performance. Poly(acrylic acid) (PAA) oligomer was first reacted with hydroxyl‐functionalized MWCNTs (MWCNTs‐OH) forming PAA‐grafted MWCNTs (PAA‐g‐MWCNTs). Subsequently, Fe3O4 nanoparticles were attached onto the surface of PAA‐g‐MWCNTs through an amidation reaction between the amino groups on the surface of Fe3O4 nanoparticles and the carboxyl groups of PAA. Fourier transform infrared spectra confirmed that the Fe3O4 nanoparticles and PAA‐g‐MWCNTs were indeed chemically linked. The morphology of the nanocomposites was characterized using transmission electron microscope (TEM). The surface and bulk structure of the nanocomposites were examined using X‐ray diffraction, X‐ray photoelectron spectrometer (XPS), and thermogravimetric analysis (TGA). The magnetic performance was characterized by vibrating sample magnetometer (VSM) and the magnetic saturation value of the magnetic nanocomposites was 47 emu g?1. The resulting products could be separated from deionized water under an external magnetic field within about 15 s. Finally, the magnetorheological (MR) performances of the synthesized magnetic nanocomposites and pure Fe3O4 nanoparticles were examined using a rotational rheometer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
A reversible addition‐fragmentation chain transfer (RAFT) agent was directly anchored onto Fe3O4 nanoparticles in a simple procedure using a ligand exchange reaction of S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate with oleic acid initially present on the surface of pristine Fe3O4 nanoparticles. The RAFT agent‐functionalized Fe3O4 nanoparticles were then used for the surface‐initiated RAFT copolymerization of N‐isopropylacrylamide and acrolein to fabricate structurally well‐defined hybrid nanoparticles with reactive and thermoresponsive poly(N‐isopropylacrylamide‐co‐acrolein) shell and magnetic Fe3O4 core. Evidence of a well‐controlled surface‐initiated RAFT copolymerization was gained from a linear increase of number‐average molecular weight with overall monomer conversions and relatively narrow molecular weight distributions of the copolymers grown from the nanoparticles. The resulting novel magnetic, reactive, and thermoresponsive core‐shell nanoparticles exhibited temperature‐trigged magnetic separation behavior and high ability to immobilize model protein BSA. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 542–550, 2010  相似文献   

19.
利用种子生长法制备了磁性Fe2O3/Au/Ag复合纳米粒子,采用UV-vis和SEM对其光学性质以及表面结构的变化进行了表征.通过调节硝酸银的用量,制备了一系列具有不同Ag壳层厚度和表面结构的双金属外壳纳米粒子.以苯硫酚(TP)为探针分子,研究了不同Ag壳厚度的磁性纳米粒子的表面增强拉曼散射(SERS)活性.结果表明其SERS活性与表面结构的改变有关,在同时出现Ag和Au光学性质的Fe2O3/Au/Ag复合纳米粒子表面可观察到最强的SERS效应,这与表面的针孔效应以及Ag和Au之间的耦合增强作用有关.考察了Fe2O3/Au/Ag复合纳米粒子的磁富集作用,并利用SERS原位监测磁富集溶液中低浓度TP的能力,研究结果表明通过磁富集可提高SERS检测限,并且Fe2O3/Au/Ag的磁富集能力较Fe2O3/Au弱,但前者SERS信号较强.  相似文献   

20.
A facile in situ method to grow Au nanoparticles (NPs) in hexaniobate nanoscrolls is applied to the formation of plasmonic Au@hexaniobate and bifunctional plasmonic‐magnetic Au‐Fe3O4@hexaniobate nanopeapods (NPPs). Utilizing a solvothermal treatment, rigid multiwalled hexaniobate nanoscrolls and partially filled Fe3O4@hexaniobate NPPs were first fabricated. These nanostructures were then used as templates for the controlled in situ growth of Au NPs. The resulting peapod structures exhibited high filling fractions and long‐range uniformity. Optical measurements showed a progressive red shift in plasmonic behavior between Au NPs, Au NPPs, and Au‐Fe3O4 NPPs; magnetic studies found that the addition of gold in the Fe3O4@hexaniobate NPPs reduced interparticle coupling effects. The development of this approach allows for the routine bulk preparation of noble‐metal‐containing bifunctional nanopeapod materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号