首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
A new class of blend system comprising weather resistant acrylonitrile/styrene/acrylate (ASA) terpolymer and Zn-ionomer was developed. Based on Zn-ionomer content, the blend system either forms ‘mushroom’ or ‘brush’ type conformation which affected dynamic rheology, DSC, DMA and creep properties differently. Formation of ionic crosslinkings by Zn-ionomer in ‘brush regime’ as well as limited ionic crosslinkings in ‘mushroom regime’ resulted in different nature molecular chain relaxation response. The DSC endotherm peak and glass transition temperature were also influenced by the type of conformation and ion-dipole interaction between the blend components. The tan δ from DMA study also reflected the similar trend. The creep deformation behavior of the blend was found to be dependent on highly deformable Zn-ionomer content and with temperature. The Findley model analysis suggests the ionic crosslinkings may be the possible reason for controlled creep deformation of the blend.  相似文献   

3.
The deformation and fracture behavior of sulphonated polystyrene ionomers, and of blends of these with polystyrene have been investigated. The microstructure of the ionomer, which varies with ion content, appears to have a significant effect on mechanical properties. Both tensile strength and toughness increase appreciably at ion contents near 5 mol%, where clusters become dominant over ion pairs and multiplets. In blends of the ionomers and polystyrene, phase separation occurs and the ionomer component appears in the form of fine particles dispersed in the polystyrene matrix. These particles possess a greater effective entanglement density than the matrix, as a result of ionic crosslinking, and they provide reinforcement against early craze breakdown and fracture. Tensile strength and fracture energy increase rapidly as the ionomer concentration in the blend is increased and they become essentially independent of blend ratio above about 10 wt% of the ionomer. Tests carried out on thin film specimens of the blends show that the dispersed ionomer particles adhere well to the matrix and contribute to the fracture energy both by inducing matrix crazing and by internal fibrillation within the particles.Dedicated to Professor Hans-Henning Kausch on the occasion of his 60th birthday.  相似文献   

4.
The mechanical properties and morphology of homoblends of poly(ethyl acrylate‐co‐acrylate) (PEAA) having one ion pair per ionic monomer repeat unit and poly(ethyl acrylate‐co‐itaconate) (PEAITA) having two ion pairs were investigated. It was found that the compositional variation in the ionomer homoblends did not affect the matrix or cluster glass transition temperatures of the two ionomers of the homoblends. It was also observed that the ionomer homoblends showed two ionic plateaus and that the changes in the two ionic moduli were directly related to the relative amounts of the two ionomers. The ionic moduli calculated with the model for filler‐dispersed materials were found to fit the experimental data to a great extent. Therefore, it was suggested that the PEAITA/PEAA ionomer homoblends were filler‐containing composite materials rather than miscible blends. In the X‐ray scattering study, it was observed that the morphology of the ionomer homoblends was not affected by mixing. The results obtained in this work might be useful for the modification of the storage moduli of copolymers in a certain temperature range without the alteration of their processing temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1045–1052, 2007.  相似文献   

5.
Two samples have been prepared to study the effect of interchain crosslinking on the heat shrinkability of the blends. In the first sample low‐density poly(ethylene) is blended with ethylene acrylic rubber while in the second one glycidyl acrylate‐grafted low‐density poly(ethylene) is blended with ethylene acrylic rubber. It is revealed that interchain crosslinking in the glycidyl acrylate grafted low‐density poly(ethylene) and ethylene acrylic rubber improves the heat shrinkability in the second sample.  相似文献   

6.
This work focuses on the effect of electron beam irradiation on the physico‐mechanical, dynamic mechanical and dielectric properties of blends based on ethylene octene copolymer (EOC) and poly dimethyl siloxane (PDMS) rubber. It is found that electron beam irradiation caused considerable improvement in the physico‐mechanical properties; the tensile strength was enhanced by nearly 35% for 70:30 EOC:PDMS blend. Phase morphology of the blends analyzed before irradiation by scanning electron microscopy (SEM) exhibited droplet/matrix morphology with sizes of the PDMS rubber domain varying from 0.55 µm to 0.47 µm as the amount of PDMS rubber decreased from 30 wt% to 10 wt%. This reduction in the PDMS rubber domain has been correlated with the physico‐mechanical properties of the blends. Further, the dynamic mechanical properties and creep behavior of these EOC:PDMS blends before and after irradiation has been studied. It is inferred that the 70:30 blend after radiation crosslinking shows a 17% decrease in the creep compliance, i.e. higher creep resistance compared to neat blends. All the radiation crosslinked blends exhibited lower dielectric constant, lower dielectric loss and higher electrical resistivity as compared to the virgin blends which makes it suitable for cable insulating application. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Even though poly(ethylene oxide) (PEO) is immiscible with both poly(l ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA), this article shows a working route to obtain miscible blends based on these polymers. The miscibility of these polymers has been analyzed using the solubility parameter approach to choose the proper ratios of the constituents of the blend. Then, PVA has been grafted with l ‐lactide (LLA) through ring‐opening polymerization to obtain a poly(vinyl alcohol)‐graft‐poly(l ‐lactide) (PVA‐g‐PLLA) brush copolymer with 82 mol % LLA according to 1H and 13C NMR spectroscopies. PEO has been blended with the PVA‐g‐PLLA brush copolymer and the miscibility of the system has been analyzed by DSC, FTIR, OM, and SEM. The particular architecture of the blends results in DSC traces lacking clearly distinguishable glass transitions that have been explained considering self‐concentration effects (Lodge and McLeish) and the associated concentration fluctuations. Fortunately, the FTIR analysis is conclusive regarding the miscibility and the specific interactions in these systems. Melting point depression analysis suggests that interactions of intermediate strength and PLOM and SEM reveal homogeneous morphologies for the PEO/PVA‐g‐PLLA blends. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1217–1226  相似文献   

8.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

9.
The small‐angle X‐ray scattering profile of styrene‐isoprene‐sulfonated isoprene terpolymer ionomers was studied to clarify the structure of ionic aggregates at ambient temperature as a function of the degree of neutralization of Na or Mg cations. An ionic cluster peak was observed for ionomers with a degree of neutralization greater than 25%. The ionic cluster peak was analyzed by the modified hard sphere model proposed by Yarusso and Cooper [Macromolecules, 1983, 16, 1871], and the size of the ion cluster, the closest approach distance between the clusters, and the average system volume per ion cluster were evaluated by a curve‐fitting method. The size of the ion clusters of the ionomer with monovalent Na cation increased with the degree of neutralization, but for divalent Mg cation slightly changed. The number of ion clusters of the styrene‐isoprene‐sulfonated isoprene ionomer with Na and Mg cations characteristically increased with the neutralization. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1307–1311, 2000  相似文献   

10.
Fourier-transform infrared (FTIR) spectroscopy was used to examine specific interactions contributing to the partial miscibility in blends of styrene-sodium methacrylate copolymer (S-NaMA) and poly(ethylene oxide) (PEO). From the shifts of carboxylatelon and ether group stretching bands, an important specific interaction was found involving ion-dipole bonding between the ionic group in styrene ionomer and the ether group in PEO. The asymmetric stretching vibration frequency of the carboxylate ion group increases as the fractional amount of PEO in the blend is increased, while the symmetric stretching frequency is decreased. The transition value of the fraction of PEO, above which both vibration frequencies of the carboxylate ion mentioned above remained almost unchanged, increases as the concentration of ionic groups in ionomer is increased. The ether group stretching band shifts to higher frequencies as the PEO content in the ionomer/PEO blend is increased. From the differential scanning calorimetry (DSC) and FTIR studies, we find that the iondipole interaction is the important mechanism that determines the miscibility of S-NaMA/PEO blends. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
A high molecular weight styrene ionomer containing 5 mol% sodium methacrylate was blended with a styrene oligomer (MW 800) and investigated by dynamic mechanical techniques. The focus of the study is on the dynamic melt rheology of these materials, whose ratios by weight of ionomer to oligomer are 60/40, 40/60, and 25/75. The glass-transition temperature and ionic transition are first characterized by torsion pendulum measurements as a function of temperature. It appears that a maximum level of plasticization is achieved for the ionic regions, the extent depending on sample history. Time–temperature superposition is obeyed by the blend of 60 wt% ionomer, but not by the other two blends. Relaxations due to the ionic regions are clearly evident in the relaxation spectra of all three blends. Above a particular temperature, the 25 wt% blend indicates an Arrhenius type of dependence.  相似文献   

12.
A family of conformational rheological models for multi‐component miscible polymer blends is developed using a modified form of the Poisson bracket formulation. Two conformation tensors called c 1 and c 2 are introduced to show the orientation of the first and the second components of a blend, respectively. The mobility tensor and the energy function for each blend component are expressed in terms of these conformation tensors. The interaction effects are also included by energy expressions. The predictions of this family of “volume‐preserving” models are illustrated for a Hookean‐type energy function and several expressions of the modified mobility tensors. The results are illustrated for material functions in transient (start‐up and relaxation) and steady shear flows. The predictions are compared with experimental data taken from the literature for a miscible polymer blend. Study of the model sensitivity to its parameter shows that model predictions can cover a wide range of rheological behavior generally observed for multi‐component miscible polymer blends in steady and transient shear flows.

Experimental data and model predictions for steady shear viscosity for HDPE/LDPE blends.  相似文献   


13.
Thin films were fabricated layer‐by‐layer (LbL) via ionic bonds formed between a cationic ionomer and an anionic ionomer, which were produced via proton transfer from poly(styrene‐co‐styrenesulfonic acid) to poly(methyl methacrylate‐co‐4‐vinylpyridine) in an organic solvent, tetrahydrofuran. Ionic contents of the ionomers were very low down to 5.6 mol %, much lower than usual polyelectrolytes. The build up of the LbL films was demonstrated by UV/vis spectroscopy: the absorbance of the phenyl rings in styrene residues increased with the number of depositions (thus the number of layers). Transmission electron microscopy observation of strained thin films showed unique deformation mode, involving many bands that developed both in the parallel and perpendicular directions to the stress axis. This is quite different from the deformation modes seen for ionomer blend films and for coextruded polystyrene/poly(methyl methacrylate) multilayer tapes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 101–105, 2012  相似文献   

14.
Melt‐processable blends were prepared from rigid molecules of an ionically modified poly(p‐phenylene terephthalamide) (PPTA) and flexible‐coil molecules of poly(4‐vinylpyridine) (PVP). Dynamic mechanical analyses of blends with 50% or more of the ionic PPTA component revealed the presence of two distinct phases. The glass‐transition temperature of the more stable, ionic PPTA‐rich phase increased linearly with the ionic PPTA content. The second phase present in these blends was an ionic PPTA‐poor, or a PVP‐rich, phase. For this phase, a reasonably good fit of the data, showing the glass‐transition temperature as a function of the ionic PPTA content, was achieved between the results of this study and the reported results of previous investigation of molecular composites of the same two components with ionic PPTA contents of 15 wt % or less. The possible influence of annealing on the blend structure of a 90/10 blend of ionic PPTA and PVP was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1468–1475, 2003  相似文献   

15.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

16.
The effect of Na bentonite, Ca bentonite, and kaolin fillers on the macrostructure and microstructure of acrylonitrile butadiene rubber, ethylene propylene diene rubber, and their blend (50/50) was studied through electrical and mechanical measurements, as well as with positron annihilation lifetime spectroscopy. The real part of permittivity (ε′), dielectric loss (ε″), and the crosslinking density were found to increase with increasing filler content. The increase of crosslinking density of the blend with increasing amount of fillers reflects a decrease in the equilibrium swelling up to 21.50 wt % compared with that of the unfilled blends. The mechanical investigation showed pronounced increase in the tensile strength, and in elongation at break with the addition of up to 21.50 wt % of filler. In addition, comparing between different fillers showed that the reinforcing effect of Na bentonite is more effective than Ca bentonite and kaolin but the physico‐mechanical of Ca bentonite is less than that for kaolin. The positron annihilation lifetime measurements revealed that the free‐volume properties were strongly affected by the amount and type of filler, in particular, the free‐volume fraction was dramatically decreased with increasing filler content. Furthermore, correlations were made between the free‐volume parameters and both electrical and mechanical properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1825–1838, 2009  相似文献   

17.
The post‐functionalization of poly(3‐hexylthiophene) (P3HT) via various synthetic routes is reported. Well‐defined and monofunctionalized ω‐thiol‐terminated P3HT, ω‐carboxylic acid‐terminated P3HT, ω‐acrylate‐terminated P3HT, and ω‐methacrylate‐terminated P3HT are obtained in high yields through a straightforward procedure. From those, different novel P3HT‐based graft copolymers are synthesized following two routes: “grafting onto” and “grafting through” (macromonomer polymerization) methods. The synthesis of three types of graft copolymers is described. Each one has “rod” P3HT‐grafted side chains on a “coil” main chain, which can be polyisoprene, poly(vinyl alcohol), or poly(butyl acrylate). Each copolymer is characterized by size‐exclusion chromatography and NMR.  相似文献   

18.
The thermal behaviour of natural rubber/acrylonitrile butadiene rubber (NR/NBR) was studied using thermogravimetry (TG) and differential scanning calorimetry (DSC) in terms of blend ratio, crosslinking systems, fillers and compatibilizer (neoprene) were analyzed. The presence of NBR markedly increases the thermal stability of their blends and it lies in between NR and NBR. DSC studies revealed the thermodynamic immiscibility of the NR/NBR blends by the presence of two distinct glass transition temperatures and the immiscibility was prominent even in the presence of a compatibilizer.  相似文献   

19.
The plasticization by 4-decylaniline (4DA) of a microphase-separated poly(ethyl acrylate) ionomer containing sodium carboxylate groups is examined. Dynamic mechanical thermal analysis, supplemented by differential scanning calorimetry, shows that the matrix and cluster glass transitions (Tg's) in the ionomer are both depressed by ca. 1°C/wt % 4DA; this, in turn, is similar to the Tg depression in the blend of the parent poly(ethyl acrylate) (PEA) with 4DA. There is no evidence of 4DA crystallinity in the blend. Small-angle x-ray scattering (SAXS) measurements show that the ionomer peak increases in intensity and decreases in scattering angle with increasing concentration of 4DA in the blend; the corresponding Bragg spacing, initially at 2.3 nm, increases by ca. 0.04 nm/wt % 4DA. These results, supported by preliminary spectroscopic measurements, are attributed to hydrogen bonding interactions between the amine groups of 4DA and the ester groups in PEA and the ionomer, rendering the blend miscible. It is argued that the uniform distribution of 4DA throughout the material plasticizes both phases of the ionomer by adding free volume; this also accounts for the increase in the characteristic spacing detected by SAXS.  相似文献   

20.
We prepared novel proton‐conductivity membranes based on blends of sulfonated polyimides. The blend membranes were prepared from a sulfonated homopolyimide and a sulfonated copolyimide with a solvent‐casting method. The proton conductivities of the blend membranes were measured as functions of the temperature with four‐point‐probe electrochemical impedance spectroscopy. The conductivity of the membranes strongly depended on the sulfonated homopolyimide content and increased with an increase in the content. The proton conductivity of all the blended membranes indicated a higher value than that determined in Nafion at 80 °C, and this may mean that the proton transfer in the blend membranes is responsible for the ionic channels induced by the hydrophobic and hydrophilic domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1325–1332, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号