首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《先进技术聚合物》2018,29(2):843-851
The mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers reinforced rigid polyurethane (PU) composites were studied, and the effects of the fiber surface treatment and the mass fraction were discussed. Chromic acid was used to treat the UHMWPE fibers, and polyurethane composites were prepared with 0.1 to 0.6 wt% as‐received and treated UHMWPE fibers. Attenuated total reflection Fourier transform infrared demonstrated that oxygen‐containing functional groups were efficiently grafted to the fiber surface. The mechanical performance tests of the UHMWPE fibers/PU composites were conducted, and the results revealed that the treated UHMWPE fibers/PU composites had better tensile, compression, and bending properties than as‐received UHMWPE fibers/PU composites. Thermal gravimetric analyzer showed that the thermal stability of the treated fiber composites were improved. The interface bonding of PU composites were investigated by scanning electron microscopy and dynamic mechanical analysis, and the results indicated that the surface modification of UHMWPE fiber could improve the interaction between fiber and PU, which played a positive role in mechanical properties of composites.  相似文献   

2.
The mechanical behaviour and ballistic performance of carbon, glass (E and S type), aramid and polyethylene fabric reinforced composites with different epoxy resins were studied. The specimens – produced by hand lay-up method – were characterized by low velocity (Charpy and drop-weight tests) and high velocity (two different calibre ballistic) impact tests. The energy absorption capacity of the composites was found to be strongly affected by the material properties of the reinforcing fiber, by the type of fabric structure and by the elasticity of resin.  相似文献   

3.
The present work comparatively studied the modification effects of short carbon fiber (CF) on the mechanical properties and fretting wear behavior of ultra‐high molecular weight polyethylene (UHMWPE)/CF composites. The interactions between CFs and UHMWPE interface were also investigated in detail. The results showed that, with the increase in fiber content, the compressive modulus and hardness of the composites increased, while its impact strength decreased. It was found that filling of CF can reduce the friction and wear of UHMWPE. In addition, the UHMWPE‐based composites reinforced with nitric acid‐treated CF exhibited better mechanical properties, lower friction coefficient, and higher wear resistance than those of untreated UHMWPE/CF composites. This was attributed to the improvement of interfacial adhesion and compatibility between CF and UHMWPE matrix caused by surface chemical modification of CF. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE) fiber was treated to reinforce the polytetrafluoroethylene/polyoxymethylene (PTFE/POM), and the mechanical properties of surface‐treated UHMWPE were investigated. Scanning electron microscopy was utilized to study the fracture surfaces of UHMWPE/POM/PTFE composites. Experimental results showed that the surface treatment of UHMWPE fiber effectively improves the mechanical property of POM/PTFE composites. Scanning electron microscopy studies indicated that surface modification could improve the interfacial adhesion of POM/PTFE composites. And the dispersion of UHMWPE in POM/PTFE composites was also improved after the surface modification. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Mechanical properties of composites made up of ultra‐high‐molecular‐weight polyethylene (UHMWPE) fiber, polyimide (PI), and TiO2 particles were investigated. The hybrid composite of 20 vol% of UHMWPE fiber with TiO2 showed tensile strength greater than UHMWPE fiber/PI composite. A positive hybrid effect in tensile strength is obtained. It is observed that addition of small amount of TiO2 to UHMWPE fiber/PI increased the tensile strength of the composite by 28%. With increase in TiO2 loading to 1 to 3 vol%, the impact strength of the hybrid composite is increased from 55 KJ/m2 to 69 KJ/m2. This maximum value is more than one and a half times greater than the impact strength of neat UHMWPE fiber/PI composite.  相似文献   

6.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE) fibers have been modified by plasma treatment to increase adhesion in high‐density polyethylene (HDPE) matrices. Results showed that surface roughness predominates for modified UHMWPE fibers, indicating that the plasma treatment favors the interaction with HDPE. Unmodified HDPE composite samples gave a lower interlaminar shear strength than did the samples that were incorporated with UHMWPE. The addition of unmodified UHMWPE fibers to the neat HDPE significantly increases interlaminar shear strengths of composites, up to 20 vol%. The oxygen concentration increased from 16.16 %to 21.99%, and the ratio of oxygen to carbon atoms increased significantly from 0.194 to 0.284 after oxygen plasma treatment for 5 minutes with a power of 300 W.  相似文献   

7.
Mechanical properties of carbon fiber (CF) and carbon nanotube (CNT)‐filled thermoplastic high‐density polyethylene (HDPE) composites were studied with particular interest on the effects of filler content and fiber surface treatment by coupling agent. Surface‐treated CF‐filled HDPE composites increased their tensile strength and impact strength, which is further increased with the addition of CNT. SEM showed that CNT‐coating‐treated CF‐HDPE composites show better dispersion of the filler into the matrix, which results in better interfacial adhesion between the filler and the matrix. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Conductive polymer composites (CPC) containing nickel‐coated carbon fiber (NiCF) as filler were prepared using ultra‐high molecular weight polyethylene (UHMWPE) or its mixture with ethylene‐methyl methacrylate (EMMA) as matrix by gelation/crystallization from dilute solution. The electrical conductivity, its temperature dependence, and self‐heating properties of the CPC films were investigated as a function of NiCF content and composition of matrix in details. This article reported the first successful result for getting a good positive temperature coefficient (PTC) effect with 9–10 orders of magnitude of PTC intensity for UHMWPE filled with NiCF fillers where the pure UHMWPE was used as matrix. At the same time, it was found that the drastic increase of resistivity occurred in temperature range of 120–200 °C, especially in the range of 180–200 °C, for the specimens with matrix ratio of UHMWPE and EMMA (UHMWPE/EMMA) of 1/0 and 1/1 (NiCF = 10 vol %). The SEM observation revealed to the difference between the surfaces of NiCF heated at 180 and 200 °C. Researches on the self‐heating properties of the composites indicated a very high heat transfer for this kind of CPCs. For the 1/1 composite film with 10 vol % NiCF, surface temperature (Ts) reached 125 °C within 40 s under direct electric field where the supplied voltage was only 2 V corresponding to the supplied power as 0.9 W. When the supplied voltage was enough high to make Ts beyond the melting point of UHMWPE component, the Ts and its stability of CPC films were greatly influenced by the PTC effect. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1253–1266, 2009  相似文献   

9.
Conductive polymer composites possessing a low percolation‐threshold concentration as a result of double percolation of a conductive filler and its host phase in an immiscible polymer blend afford a desirable alternative to conventional composites. In this work, blends of high‐density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE) were used to produce ternary composites containing either carbon black (CB), graphite (G), or carbon fiber (CF). Blend composition had a synergistic effect on electrical conductivity, with pronounced conductivity maxima observed at about 70–80 wt % UHMWPE in the CB and G composites. A much broader maximum occurred at about 25 wt % UHMWPE in composites prepared with CF. Optical and electron microscopies were used to ascertain the extent to which the polymers, and hence filler particles, are segregated. Differential scanning calorimetry of the composites confirmed that the constituent polymers are indistinguishable in terms of their thermal signatures and virtually unaffected by the presence of any of the fillers examined here. Dynamic mechanical analysis revealed that CF imparts the greatest stiffness and thermal stability to the composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1013–1023, 2002  相似文献   

10.
In this paper, the wear performance of an ultra‐high molecular weight polyethylene composites filled with wood fiber were studied using a pin‐on‐disc method. The effects of surface treatment of wood fiber and sliding load and on the friction and wear of the wood fiber/UHMWPE composite are reported. The test results showed that the sliding load is an important controlling factor; its effect is diminished when the wood fiber is modified.  相似文献   

11.
Carbon fiber (CF) filled low‐molecular‐weight polyethylene (LMWPE) and ultra‐high molecular weight polyethylene (UHMWPE) composites were prepared by the gelation from solution and the kneading in the melting state. The content of carbon fibers was fixed to be 23.5 vol %. The resistivity, positive temperature coefficient (PTC), and dielectric behaviors of the composites became more pronounced with increasing content of LMWPE with much higher thermal expansion than that of UHMWPE. The PTC effect became most significant, when the blend ratio of LMWPE to UHMWPE was 9/1. Beyond 9/1, the PTC effect was less pronounced. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) revealed that the UHMWPE and LMWPE chains within the composite crystallized independently by gelation from solution and were virtually unaffected by the presence of carbon fibers. Consequently, it was confirmed that carbon fibers selectively were localized in the mixed region of LMWPE and UHMWPE for the composite (3/1 and 6/1) and mainly in the region of LMWPE for the 9/1, 12/1, and 15/1 composites. This indicated that the content of carbon fibers within LMWPE region was the highest for the 9/1 composite and the 9/1 composite provides the most significant PTC effect. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 359–369, 2008  相似文献   

12.
A kind of organic–inorganic composite film with biomimetic superhydrophobic performance was prepared on several metals including steel, aluminum, and copper. The organic matrix was ultrahigh‐molecular‐weight polyethylene (UHMWPE), and the inorganic filler was nanosilica. Scanning electron microscope observation indicated addition of nanosilica greatly changed the topography of the UHMWPE film. Special convexities were formed on the surfaces of the composite films, which made the composite films rougher than that of pure UHMWPE film. The nanosilica randomly scattered on the surface of the convexities and formed hierarchical structure similar to that of some plant leaves with superhydrophobic characteristics. Interestingly, it was found that there were remarkable differences between the sliding angles (SA) of water droplet on the composite films on different metals although the contact angles (CA) of water droplet on these films were quite close. The CA on the composite films on steel was about 157°, and the SA was larger than 90°, which demonstrated obvious superhydrophobic and sticky characteristic. But to the films on aluminum and copper, the CAs on them were larger than 160° and the SAs were between 3° and 4°, which meant excellent superhydrophobic and roll‐off performance. Scanning electron microscope observation indicated that there were some micro‐orifices in the film on steel and these micro‐orifices were connected to some extent. It was believed that these micro‐orifices provided capillary force and restrained sliding of water droplet. A sticky model based on capillary mechanism was proposed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
To prevent the loss of fiber strength, ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers were treated with an ultraviolet radiation technique combined with a corona‐discharge treatment. The physical and chemical changes in the fiber surface were examined with scanning electron microscopy and Fourier transform infrared/attenuated total reflectance. The gel contents of the fibers were measured by a standard device. The mechanical properties of the treated fibers and the interfacial adhesion properties of UHMWPE‐fiber‐reinforced vinyl ester resin composites were investigated with tensile testing. After 20 min or so of ultraviolet radiation based on 6‐kW corona treatment, the T‐peel strength of the treated UHMWPE‐fiber composite was one to two times greater than that of the as‐received UHMWPE‐fiber composite, whereas the tensile strength of the treated UHMWPE fibers was still up to 3.5 GPa. The integrated mechanical properties of the treated UHMWPE fibers were also optimum. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 463–472, 2004  相似文献   

14.

The processability of ultrahigh molecular weight polyethylene (UHMWPE) improved by oligomer-modified calcium carbonate (CaCO3) was observed in our previous work. In order to understand the effect of oligomer-modified CaCO3 on the crystallization of UHMWPE, the non-isothermal crystallization behavior and crystallization kinetics of UHMWPE composites filled by oligomer-modified CaCO3 was studied by differential scanning calorimetry in this work. Jeziorny and Mo methods were used to describe the non-isothermal crystallization kinetics of UHMWPE composites. The effect of modified filler content and cooling rate on the crystallization temperature and crystallization rate was discussed. The heterogeneous nucleation of modified CaCO3 slightly increases the crystallization temperature of UHMWPE. The crystallization enthalpy of UHMWPE composites is significantly higher than that of UHMWPE. The crystallization rate of UHMWPE composites depends on the filler contents and cooling rate.

  相似文献   

15.
In this paper, an efficient flame retardant, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was covalently grafted onto the surface of expandable graphite (EG). The resultant DOPO‐grafted expandable graphite (EG‐g‐DOPO) was characterized by Fourier transform infrared spectroscopy, energy dispersive spectroscopy, and X‐ray photoelectron spectroscopy (XPS), respectively. The thermal stability of EG‐g‐DOPO was also evaluated by thermogravimetric analysis (TGA). Moreover, a series of flame‐retardant ultra‐high‐molecular‐weight polyethylene (UHMWPE) composites with various concentrations of EG‐g‐DOPO were prepared and evaluated. The results show that the UHMWPE composite with 20 wt% EG‐g‐DOPO possesses a satisfactory UL‐94 flame‐retardant grade (V‐0) and a high limiting oxygen index (30.6%). The residual char of the UHMWPE composite with higher EG‐g‐DOPO concentration shows more compact and integrated, providing an efficient barrier for heat release.  相似文献   

16.
A number of the novel photochromic polyethylene (PE)‐based liquid crystal composites were prepared and studied. The oriented stretched porous polyethylene films were used as the polymer matrices. Commercial liquid crystals doped with new photochromic compounds were introduced into PE films and photo‐optical properties of the obtained composites were investigated. It was shown that a director of nematic liquid crystals is highly oriented along the stretching axis of PE films resulting in noticeable linear dichroism of the PE composite films. New approaches for reversible or irreversible image recording on PE LC composites by UV irradiation were demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Wood fiber–reinforced ultrahigh molecular weight polyethylene (wood fiber/UHMWPE) composites have been filled with acid‐treated clay to enhance the adhesion. According to the modification, the interlaminar shear strength of composites has been greatly improved. X‐ray photoelectron spectroscopy and scanning electron microscopy are used to examine the microscopic properties of resultant composites. The enhanced interlaminar shear strength is attributed to the clay interlock, which improves the wetting between wood fibers and resins.  相似文献   

18.
In this paper, silicone‐coated intumescent flame retardants was prepared by an efficient and simple approach, aiming at enhancing the flame‐retardant efficiency and smoke suppression properties. The surface of expandable graphite (EG) was treated prior to the coverage of nonflammable silicone. The resultant silicone‐modified EG hybrid (SEG) was combined with ammonium polyphosphate (APP) and applied as a flame‐retardant and smoke‐suppressant for ultrahigh molecular weight polyethylene (UHMWPE). Compared with UHMWPE/APP/EG (with 15 wt% APP/EG), UHMWPE/APP/SEG (with 15 wt% APP/SEG) gives decrement by 18.5% in the peaks of the heat release rate, 6.33% in total heat release and 13.6% in total smoke release, whereas increment by 23% in tensile strength and 12.1% in elongation at break, respectively. It is suggested that the introduction of silicone on the surface of EG can improve the interfacial compatibility between EG and UHMWPE. Moreover, it can lead to forming more char residue and reducing the release of smoke particulates during combustion process of the composites.  相似文献   

19.
Experimental studies are presented on stress wave attenuation during ballistic impact for four types of polymer matrix composites. The materials considered are plain weave E-glass/epoxy, 8H satin weave T300 carbon/epoxy and two types of hybrid composite made using plain weave E-glass fabric and 8H satin weave T300 carbon fabric with epoxy resin. Strain profiles were obtained during ballistic impact event at certain distances from the point of impact. There is stress wave attenuation leading to reduction in peak strains obtained as the stress wave propagates away from the point of impact. Further, it is observed that ballistic limit velocity, V50, can be increased compared to carbon only composites by adding E-glass layers to T300 carbon layers.  相似文献   

20.
Mechanical properties of hybrid PMMA composites reinforced with UHMWPE fiber and nano‐titanium dioxide (2, 4, 6, and 8 wt%) was investigated. In this work, the effect of UHMWPE fiber surface treatment on tensile, flexural, and impact properties of PMMA composites was studied. The fiber loadings were varied from 0% to 20%. The addition of UHMWPE fiber had caused a decline in the tensile strength of the PMMA composite. Results revealed that the presence of titanium dioxide on the surface treated UHMWPE fiber has further enhanced the efficiency of stress transfer from the matrix to the fiber thus improved the interfacial adhesion between the UHMWPE fiber and PMMA matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号