首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Dielectric elastomers are materials well known for their superior actuation behavior under applied electric field. The simplicity of material fabrication and clear working principle of dielectric elastomer actuators (DEAs) can offer various applications of dielectric elastomers. In this work, we have compared a number of different types of commercially available elastomers in terms of actuation performance. It was found that well‐known commercial rubbers like acrylonitrile‐butadiene rubbers (NBR) can offer higher actuation performance in DEAs than the frequently used dielectric elastomers, such as acrylic rubber and silicone. The acrylonitrile content of the NBR was found to play an important role in the dielectric and consequently actuation properties. More interestingly, we observed that addition of organic oil, such as dioctyl adipate, can greatly enhance the actuation performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In situ measurement techniques suitable for determination of the coefficient of thermal expansion (CTE) in thin, spin‐cast polymer films in both the in‐plane and through‐plane directions are presented. An examination of the thermal expansion behavior of cyclotene thin films has been performed. In particular, the effect of film thickness on the in‐plane and through‐plane CTE and in‐plane Young's modulus of spin‐coated cyclotene films was examined. It is shown that the mechanical response of in situ cyclotene films can be adequately described by isotropic film properties. It was also demonstrated that there is no thickness dependence on the free‐standing mechanical properties or on the resulting through‐plane thermal strain in an in situ film. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 311–321, 1999  相似文献   

3.
Expressions for the directional dependence of Young's modulus and Poisson's ratio were derived for a general material under plane‐stress conditions. Experiments with a laser extensometer to measure the Young's modulus and Poisson's ratio directly by a tension test are described, and the results are compared with the theoretical expressions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 260–266, 2004  相似文献   

4.
Tensile tests on poly (methyl methacrylate) (PMMA) were conducted to clarify the effects of humidity and strain rate on tensile properties, particularly Young's modulus. Prior to the tensile tests, specimens were kept under various humidity conditions at 293 K, which were the same as the test conditions, for a few months to adjust the sorbed water content in the specimens. The tensile tests were performed under each humidity condition at three different strain rates (approximately 1.4 × 10?3, 1.4 × 10?4, and 1.4 × 10?5 s?1). Stress‐strain curves changed with humidity and strain rate. Young's moduli were also measured at small applied stresses (below 6.7 MPa) under various humidity conditions at 293 K. Young's modulus decreases linearly with increasing humidity and a decreasing logarithm of strain rate. These results suggest that Young's modulus of PMMA can be expressed as a function of two independent parameters that are humidity and strain rate. A constitutive equation for Young's modulus of PMMA was proposed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 460–465, 2002; DOI 10.1002/polb.10107  相似文献   

5.
A new methodology to investigate the failure of elastomers in a confined geometry has been developed and applied to model end-linked polyurethane elastomers. The experimental in situ observations show that the elastomers fail by the growth of a single cavity nucleated in the region of maximum hydrostatic stress. Tests carried out at different temperatures for the same elastomer show that the critical stress at which this crack grows is not proportional to the Young's modulus E but depends mainly on the ratio between the mode I fracture energy GIC and E. A reasonable fit of the data can be obtained with a model of cavity expansion by irreversible fracture calculating the energy release rate by finite elements with a strain hardening constitutive equation. Comparison between different elastomers shows that the material containing both entanglements and crosslinks is both tougher in mode I and more resistant to cavitation relative to its elastic modulus. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48:1409–1422, 2010  相似文献   

6.
In the present work, graphene oxide (GO) and reduced graphene oxide (RGO) were incorporated at low‐density polyethylene (LDPE)/ethylene vinyl acetate (EVA) copolymer blend using solution casting method. Monolayer GO with 1‐nm thickness and good transparency was synthesized using the well‐known Hummers's method. Fourier transform infrared and X‐ray photoelectron spectroscopy data exhibited efficient reduction of GO with almost high C/O ratio of RGO. Scanning electron microscopy showed the well distribution of GO and RGO within LDPE/EVA polymer matrix. The integrating effects of GO and RGO on mechanical and gas permeability of prepared films were examined. Young's modulus of nanocomposites are improved 65% and 92% by adding 7 wt% of GO and RGO, respectively. The tensile measurements showed that maximum tensile strength emerged in 3 wt% of loading for RGO and 5 wt% for GO. The measured oxygen and carbon dioxide permeability represented noticeably the attenuation of gas permeability in composite films compared with pristine LDPE/EVA blend. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Piezoelectric constant, Young's elastic modulus, and dielectric constant of undyed and dyed films of poly(L -glutamate) were measured at 10 Hz over the temperature range ?120 to 120°C. The temperature of the maximum in ?d″14 shifts toward higher temperature up to 0.6 mg/g polymer of dye uptake and then shifts toward lower temperature by further dye sorption. The variation of the piezoelectric modulus was interpreted by the change of mobility of impurity ions in the sample.  相似文献   

8.
This paper deals with the use of cork powder, a by‐product from cork industry, as a filler to reinforce hydroxypropyl cellulose (HPC) matrix. Several films were prepared using HPC, as a matrix, filled with different amounts of cork powder (average diameter < 50 μm) (0.0; 0.5; 1.0 and 10.0% w/w) and in the presence or not of 1,4‐diisocyanatobutane (BDI) (7.0% w/w). Before the elaboration of these films, the surface properties of cork powder as well as that of suberin (main component of cork) were determined by Inverse Gas Chromatography (IGC). The tensile properties of the solid films obtained were studied and, as expected, for the films with BDI but without cork powder, the Young's modulus and the tensile strength increased, while the elongation decreased. However with the filled films it seemed that the Young's modulus decreased and the elongation increased. The Scanning Electron Microscopy showed that the fractured plane of samples with cross‐linking agent and cork powder displayed some nucleation points (0.3 μm) which indicates a strongly bonded interface and which could be considered as a responsible for the high mechanical properties observed.  相似文献   

9.
Jian Zhu  Ming He  Feng Qiu 《中国化学》2012,30(7):1399-1404
The Young's modulus of graphene with various rectangular and circular vacancy defects is investigated by molecular dynamics simulation. By comparing with the results calculated from an effective spring model, it is demonstrated that the Young's modulus of graphene is largely correlated to the size of vacancy defects perpendicular to the stretching direction. And a linear reduction of Young's modulus with the increasing concentration of mono‐atomic‐vacancy defects (i.e., the slope of ?0.03) is also observed. The fracture behavior of graphene, including the fracture strength, crack initiation and propagation are then studied by the molecular dynamics simulation, the effective spring model, and the quantized fracture mechanics. The blunting effect of vacancy edges is demonstrated, and the characterized crack tip radius of 4.44 Å is observed.  相似文献   

10.
A study of the mechanical properties of poly(ferrocenyldimethylsilane) [Fe(η‐C5H4)2SiMe2]n, 3 , a novel organometallic polymer, has been performed on thin films of this material. The Young's modulus and Poisson's ratio of film samples (15 × 1 × 1 mm) of 3 were measured in quasi‐static tension using a video extensometer. For 3 , the values of the Young's moduli (E) and Poisson's ratios (ν) were similar between axes in the plane and independent of the splicing direction used during sample preparation. The mean and standard deviation of the Young's modulus and Poisson's ratio were 0.78 ± 0.08 GPa and 0.37 ± 0.06 GPa, respectively. Thermomechanical analysis of 3 revealed a steady decrease of E from a room temperature value of approximately 0.70 GPa. Additionally, it was found that at 150 °C, 3 was unable to support even small stresses, consistent with the onset of a melt transition (ca. 135 °C). A mathematical model based on molecular geometry is developed to describe the results. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2280–2288, 2005  相似文献   

11.
Complex elastic, dielectric, and piezoelectric properties were measured on amylose films as a function of temperature and moisture content at 10 Hz. The real part of the complex Young's modulus of films containing a small amount of moisture was larger than that of a dry film. Peaks in the imaginary parts of these complex response functions were observed at about ?80°C. The height of these peaks decreased when the specimen absorbed a little moisture. The activation energy for this peak as determined from an Arrhenius plot of the dielectric frequency dispersion was about 9.5 kcal/mole. This peak was ascribed to methylol rotation. The real part of piezoelectric e constant was shifted downwards when the specimen absorbed moisture. This was attributed to the instantaneous response in the case of a step function excitation. The structure of amylose was thought to be stabilized by moisture absorption, probably due to hydrogen bonding. The mechanism of methylol rotation was examined by dielectric measurements.  相似文献   

12.
The effect of oil and curing agent content on the mechanical behavior of thermoplastic vulcanizates, based on a polypropylene (PP) and ethylene‐propylene‐diene copolymer (EPDM), was investigated. Mechanical properties such as Young's modulus, stress at 100% elongation and ultimate stress were investigated as a function of blends' composition and phase morphology. Experimental studies show that the Young's modulus of the vulcanizates depends on both PP/EPDM ratio and oil content in the blends; both ultimate strength and stress at 100% elongation increase with curing agent content.  相似文献   

13.
The porosity‐dependent Young's modulus for PEEK membranes was determined and the data compared to several empirical and semiempirical equations often applied to porous systems. The Spriggs equation, Wang's approximation, Sudduth's equation, and the foam modulus‐density relationship were all tested against the data. The relatively wide range of porosities tested in these experiments shows the Spriggs equation to be inadequate to fitting the data, especially above 50% porosity where the Young's modulus decreases rapidly. Wang's approximation to second order fitted the data well, and the porosity‐modulus relations had non‐negative coefficients as required and consistent with the ceramic data obtained by others. The data also fitted Sudduth's equations, usually applied to sintered ceramics, but equivalently good fits were obtained with nonunique fitting parameters. The foam modulus‐density relationship fitted the data for foamlike membranes but fitted less well to nonfoam morphology membranes. Finally, the data were used to determine the range of porosities and hollow fiber dimensions necessary for microfiltration and composite membrane application. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1168–1174, 2003  相似文献   

14.
Water‐swellable biodegradable materials exhibiting mechanically tenacious and tough characters in the wet state were prepared by a simple blend of two enantiomeric polylactide‐grafted dextran copolymers (Dex‐g‐PLLA and Dex‐g‐PDLA). DSC and WAXD analyses demonstrated the formation of SC crystals in the copolymer blend films. SC blend films showed lamellar‐type microphase‐separated structures. When swollen with water, these blend films showed the same level of tensile strengths and Young's modulus as the films in the dry state. SC blend films degraded gradually over a month under physiological conditions with a degradation rate faster than the corresponding Dex‐g‐PLLA films. The SC‐forming enantiomeric mixture of polylactide‐grafted polysaccharides should be a good candidate for an implantable biocompatible material exhibiting favorable mechanical properties and degradation behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Silane moisture‐cured metallocene‐catalyzed polyethylene (mPE) blend to form a novel thermoplastic vulcanizate (TPV) has been prepared. Metallocene polyethylenes with two different levels of comonomer contents were grafted with various amounts of vinyltriethoxy silane. As a result, tensile strength varies slightly with increasing the levels of silane concentrations, at all test temperatures. Tear strength generally decreases with reduced energy dissipation, at higher degrees of cure. “Threshold” fracture energy is roughly proportional to the reciprocal square root of Young's modulus. By relating tensile strength to tear strength, it was found that the corrected average depth of flaw is in the range of 29.3 ± 7.2 μm, which successfully confirms the extension of Rivlin and Thomas's theory for conventional elastomers to TPVs under an elaborate treatment, due to the limitation of the theory. Cutting strength of mPE TPVs gives an intermediate value when compared with that of crystalline plastics and conventional elastomers, which further signifies the importance of crystalline yielding even in the nanofracture zone of deformation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2207–2218, 2005  相似文献   

16.
In this study, amino derivative of pure silica zeolite nanocrystal (A‐PSZN) was dispersed into polyimide (PI) matrix to prepare PI/A‐PSZN hybrid films, and their thermal and mechanical properties, as well as hydrophobicity, were characterized scientifically. The test results show that PI/A‐PSZN hybrid films possess higher glass transition temperature, higher thermal stability and lower in‐plane coefficient of thermal expansion than pristine PI. The mechanical property data suggest that the incorporation of A‐PSZN results in an increase in Young's modulus and tensile strength of the hybrid films, but as its content exceeds the critical value (maybe 5 wt%), its enhancement effect on the hybrid's strength and toughness gets weaker. Furthermore, liquid dripping imaging analysis results indicate that the film's hydrophobicity is clearly improved by the introduction of A‐PSZN. As compared with PSZN, A‐PSZN exhibits better effect on enhancing the overall performance of pristine PI films. A comparison with other studies suggests that PI/A‐PSZN is a hybrid film with superior comprehensive properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Polyhedral oligosilsequioxane (POSS) tethered aromatic polyamide nanocomposites with various POSS fractions were prepared through Michael addition between maleimide‐containing polyamides and amino‐functionalized POSS. The chemical structures of the polyamide–POSS nanocomposites were characterized with Fourier transform infrared and 1H NMR. The polyamide–POSS nanocomposites exhibited good homogeneity in scanning electron microscopy and transmission electron microscopy observations. POSS modification increased the storage modulus and Young's modulus of the polyamides, slightly decreased their glass‐transition temperatures from 312 to 305 °C, and significantly lowered their dielectric constants from 4.45 to 3.35. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4632–4643, 2006  相似文献   

18.
A novel aromatic diamine monomer bearing tertbutyl and 4‐tertbutylphenyl groups, 3,3′‐ditertbutyl‐4,4′‐diaminodiphenyl‐4′′‐tertbutylphenylmethane (TADBP), was prepared and characterized. A series of non‐coplanar polyimides (PIs) were synthesized via a conventional one‐step polycondensation from TADBP and various aromatic dianhydrides including pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (OPDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and 4,4′‐(hexafluoroisopropylidene)dipthalic anhydride (6FDA). All PIs exhibit excellent solubility in common organic solvents such as N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), dimethyl sulfoxide (DMSO), chloroform (CHCl3), tetrahydrofuran (THF), and so on. Furthermore, the obtained transparent, strong and flexible polyimide films present good thermal stability and outstanding optical properties. Their glass transition temperatures (Tgs) are in the range of 298 to 347°C, and 10% weight loss temperatures are in excess of 490°C with more than 53% char yield at 800°C in nitrogen. All the polyimides can be cast into transparent and flexible films with tensile strength of 80.5–101 MPa, elongation at break of 8.4%–10.5%, and Young's modulus of 2.3–2.8 GPa. Meanwhile, the PIs show the cutoff wavelengths of 302–356 nm, as well as low moisture absorption (0.30% –0.55%) and low dielectric constant (2.78–3.12 at 1 MHz).  相似文献   

19.
The polyacrylonitrile precursors were made through the two‐stage drawing process. The orientation structure was examined through wide‐angle X‐ray diffraction (WAXD). The orientation factors and the modulus were measured through the sound velocity method. The mechanical properties, such as the Young's modulus, the tensile strength and the breaking elongation ratio were obtained by the single fiber tensile test. The results showed that the Young's modulus and the strength of the precursors increased with draw ratio, which is accordant with the enhancement of the micromolecular orientation degree. Therefore the orientation factors obtained from the experiments were compared with the theoretical curves which were predicted through the Crawford and Kolsky's model. The physical meaning of the parameters m and n were analyzed. A good agreement of the orientation factor between the experimental data and the theoretical curve was achieved. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The axial and transverse Young's modulus and thermal conductivity of gel and single crystal mat polyethylene with draw ratios λ = 1–350 have been measured from 160 to 360 K. The axial Young's modulus increases sharply with increasing λ, whereas the transverse modulus shows a slight decrease. The thermal conductivity exhibits a similar behavior. At λ = 350, the axial Young's modulus and thermal conductivity are, respectively, 20% and three times higher than those of steel. For this ultradrawn material both the magnitude and the temperature dependence of the axial Young's modulus are close to those of polyethylene crystal. The high values of the axial Young's modulus and thermal conductivity arise from the presence of a large percentage (∼85%) of long needle crystals. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3359–3367, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号