共查询到20条相似文献,搜索用时 15 毫秒
1.
Woon‐Seop Choi Michael G. Mikhael Anne B. Padias H. K. Hall 《Journal of polymer science. Part A, Polymer chemistry》1999,37(11):1709-1716
The spontaneous copolymerization of 4‐vinylpyridine (4‐VP) activated with lithium perchlorate (LiClO4) with various electron rich monomers (p‐methoxystyrene, MeOSt; p‐methylstyrene, MeSt; styrene, St) was investigated in various solvent systems at 75°C. Increasing the LiClO4 concentration and the nucleophilicity of the electron rich monomer increased the copolymer yields. Both 1H‐NMR and elemental analysis confirmed the almost 1:1 copolymer structure for VP/MeOSt system which possessed high molecular weight and narrow polydispersity (PDI). Compared to 4‐VP activated with zinc chloride, LiClO4 systems showed slightly lower yields and much narrower PDI. We also investigated the spontaneous copolymerization of 4‐VP activated with various protic acids in the reaction with various electron rich comonomers. However, generally protic salt forms showed less solubility in organic solvents and showed low molecular weight polymer products with low yields. The proposed initiation mechanism exhibits the formation of a σ‐bond between the β‐carbons of the two donor‐acceptor monomers, creating the 1,4‐tetramethylene biradical intermediate initiating the copolymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1709–1716, 1999 相似文献
2.
Lijun Huo Chang He Minfang Han Erjun Zhou Yongfang Li 《Journal of polymer science. Part A, Polymer chemistry》2007,45(17):3861-3871
A series of alternating copolymers of electron‐rich arylamine and electron‐deficient 2,1,3‐benzothiadiazole (BT), PV‐BT, DP‐BT, and TP‐BT, were synthesized by Heck coupling reaction. UV–vis absorption and fluorescence spectra show that the copolymerization of electron‐rich diphenylamine (DP), triphenylamine (TP), MEH‐PV (PV), and electron‐deficient BT results in low‐bandgap conjugated polymers. Within the three copolymers of PV‐BT, DP‐BT, and TP‐BT, TP‐BT possesses the highest hole mobility of 4.68 × 10? 5 cm2/V, as determined from the space charge limited current (SCLC) model. The bulk heterojunction‐typed polymer solar cells (PSCs) were fabricated with the blend of the copolymers and PCBM as the photosensitive layer. The power conversion efficiencies (PCE) of the PSCs based on PV‐BT, DP‐BT, and TP‐BT reached 0.26%, 0.39%, and 0.52%, respectively, under the illumination of AM 1.5, 100 mW/cm2. The results indicate that TP‐BT is a promising photovoltaic polymer for PSCs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3861–3871, 2007 相似文献
3.
Explosives Sensing by Using Electron‐Rich Supramolecular Polymers: Role of Intermolecular Hydrogen Bonding in Significant Enhancement of Sensitivity 下载免费PDF全文
Bappaditya Gole Wentao Song Prof. Markus Lackinger Prof. Partha Sarathi Mukherjee 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(42):13662-13680
We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron‐deficient nitro‐aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World War II. In this study, we have synthesised a series of pyrene‐based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron‐deficient NACs through a fluorescence quenching mechanism. A Stern–Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen‐bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent‐dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid‐state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid–solid interface, in which structures of self‐assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water. 相似文献
4.
J. J. Kim K.‐S. Kim S. Baek H. C. Kim M. Ree 《Journal of polymer science. Part A, Polymer chemistry》2002,40(8):1173-1183
Poly(p‐divinylene phenylene) derivatives bearing fluorene and carbazole units in the main chain and 5‐phenyl‐1,3,4‐oxadiazole moieties as side groups were prepared by the polycondensation of a newly synthesized monomer, [2‐(5′‐phenyl‐1′,3′,4′‐oxadiazole‐2′‐yl)‐1,4‐xylylene]bis(triphenyl phosphonium bromide) (OXAD), with 9,9‐dibutylfluorene‐2,2′‐dicarbaldehyde (DBFDA) and 9‐(2‐ethylhexyl)carbazole‐3,6‐dicarbaldehyde (EHCDA), which gave DBFDA–OXAD and EHCDA–OXAD. Analogues of these polymers without the side groups were also synthesized by the reaction of 1,4‐xylene bis(triphenyl phosphonium bromide) (PXYL) with the dicarbaldehydes, which gave DBFDA–PXYL and EHCDA–PXYL. All the synthesized polymers are soluble in organic solvents, giving films of good quality. The polymers are stable beyond 375 °C. They emit blue and blue‐green light, and their quantum yields are 38–79% in solution and 1–24% in film, depending on the fluorene and carbazole units as well as the side groups. In particular, the OXAD‐based polymers contain hole‐facilitating backbones and electron‐facilitating side groups, perhaps allowing these polymers to transport both holes and electrons. Overall, the synthesized polymers are potential candidates for the fabrication of light‐emitting devices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1173–1183, 2002 相似文献
5.
6.
Jaemin Lee Byung‐Jun Jung Sang Kyu Lee Jeong‐Ik Lee Hoon‐Je Cho Hong‐Ku Shim 《Journal of polymer science. Part A, Polymer chemistry》2005,43(9):1845-1857
We report here the synthesis via Suzuki polymerization of two novel alternating polymers containing 9,9‐dioctylfluorene and electron‐withdrawing 4,4′‐dihexyl‐2,2′‐bithiazole moieties, poly[(4,4′‐dihexyl‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PHBTzF) and poly[(5,5′‐bis(2″‐thienyl)‐4,4′‐dihexyl‐2,2′‐bithiazole‐5″,5″‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PTHBTzTF), and their application to electronic devices. The ultraviolet–visible absorption maxima of films of PHBTzF and PTHBTzTF were 413 and 471 nm, respectively, and the photoluminescence maxima were 513 and 590 nm, respectively. Cyclic voltammetry experiment showed an improvement in the n‐doping stability of the polymers and a reduction of their lowest unoccupied molecular orbital energy levels as a result of bithiazole in the polymers' main chain. The highest occupied molecular orbital energy levels of the polymers were ?5.85 eV for PHBTzF and ?5.53 eV for PTHBTzTF. Conventional polymeric light‐emitting‐diode devices were fabricated in the ITO/PEDOT:PSS/polymer/Ca/Al configuration [where ITO is indium tin oxide and PEDOT:PSS is poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid)] with the two polymers as emitting layers. The PHBTzF device exhibited a maximum luminance of 210 cd/m2 and a turn‐on voltage of 9.4 V, whereas the PTHBTzTF device exhibited a maximum luminance of 1840 cd/m2 and a turn‐on voltage of 5.4 V. In addition, a preliminary organic solar‐cell device with the ITO/PEDOT:PSS/(PTHBTzTF + C60)/Ca/Al configuration (where C60 is fullerene) was also fabricated. Under 100 mW/cm2 of air mass 1.5 white‐light illumination, the device produced an open‐circuit voltage of 0.76 V and a short‐circuit current of 1.70 mA/cm2. The fill factor of the device was 0.40, and the power conversion efficiency was 0.52%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1845–1857, 2005 相似文献
7.
Juae Kim Joo Young Shim Jihoon Lee Dal Yong Lee Sangmin Chae Jinwoo Kim Il Kim Hyo Jung Kim Sung Heum Park Hongsuk Suh 《Journal of polymer science. Part A, Polymer chemistry》2016,54(6):771-784
Polymers using new electron‐deficient units, 2‐pyriminecarbonitrile and 2‐fluoropyrimidine, were synthesized and utilized for the photovoltaics. Donor‐acceptor (D‐A) types of conjugated polymers ( PBDTCN, PBDTTCN, PBDTF, and PBDTTF ) containing 4,8‐bis(2‐octyldodecyloxy)benzo[1,2‐b;3,4‐b′]dithiophene (BDT) or 4,8‐bis(5‐(2‐octyldodecyloxy)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) as electron rich unit and 2‐pyriminecarbonitrile or 2‐fluoropyrimidine as electron deficient unit were synthesized. We designed pyrimidine derivatives in which strong electron‐withdrawing group (C?N or fluorine) was introduced to the C2 position for the generation of strong electron‐deficient property. By the combination with the electron‐rich unit, the pyrimidines will provide low band gap polymers with low highest occupied molecular orbital (HOMO) energy levels for higher open‐circuit voltages (VOC). For the syntheses of the polymers, the electron‐rich and the electron‐deficient units were combined by Stille coupling reaction with Pd(0)‐catalyst. Absorption spectra of the thin films of PBDTTCN and PBDTTF with BDTT unit show shift to a longer wavelength region than PBDTCN and PBDTF with BDT unit. Four synthesized polymers provided low electrochemical bandgaps of 1.56 to 1.96 eV and deep HOMO energy levels between ?5.67 and ?5.14 eV. © 2015 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 771–784 相似文献
8.
Novel affinity monolithic column modified with cuprous sulfide nanoparticles for the selective enrichment of low‐molecular‐weight electron‐rich analytes 下载免费PDF全文
A novel monolithic column modified with cuprous sulfide nanoparticles was developed and its affinity characteristics towards low‐molecular‐weight electron‐rich analytes were investigated. In the synthesis process, home‐made cuprous oxide nanocubes were immobilized on the surface of monolithic skeleton with the moderate thickness based on the strong interaction between imidazole groups and cuprous oxide, then the cuprous oxide layer was transformed into the more stable cuprous sulfide layer through the treatment by sodium sulfide. The resulting cuprous sulfide modified monolithic column presented good permeability and stability in a wide pH range from 2 to 10. Two kinds of typical electron‐rich analytes, kanamycin A and purine, were chosen to assess its affinity characteristics. Compared with the commercial Cu2+‐ and Ni2+‐based affinity sorbents, a larger binding capacity of cuprous sulfide modified column toward kanamycin A was obtained under basic condition and the recovery of kanamycin A in a milk sample was over 70%. Moreover, the binding capacity of cuprous sulfide modified column for purine was up to 5.57 mg/mL in frontal elution mode. These results suggested that the Cu2S column has a promising application for the enrichment of electron‐rich analytes. 相似文献
9.
In Hwan Jung Young Kwan Jung Jonghee Lee Jong‐Hwa Park Han Young Woo Jeong‐Ik Lee Hye Yong Chu Hong‐Ku Shim 《Journal of polymer science. Part A, Polymer chemistry》2008,46(21):7148-7161
We synthesized two fluorene‐based copolymers poly[(2,5‐bis(4‐hexylthiophen‐2‐yl)thiazolo[5,4‐day]thiazole‐5,5′‐diyl)‐alt‐(9,9′‐dioctylfluorene‐2,7‐diyl)] ( PF‐TTZT), and poly[(5,5′‐bis(4‐hexylthiophen‐2‐yl)‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9′‐dioctylfluorene‐2,7‐diyl)] (PF‐TBTT), which contain the electron‐withdrawing moieties, thiazolothiazole, and bithiazole, respectively. Through electrochemical studies, we found that these two polymers exhibit stable reversible oxidation and reduction behaviors. Moreover, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of PF‐TBTT are lower than those of PF‐TTZT, and the bandgap of PF‐TBTT is smaller than that of PF‐TTZT. Thus the bithiazole moiety in PF‐TBTT is more electron‐withdrawing than the thiazolothiazole moiety in PF‐TTZT. Light‐emitting devices with indium tin oxide (ITO)/poly(3,4‐ethylene dioxythiophene):poly(styrenesulfonate)(PEDOT)/polymer/bis(2‐methyl‐8‐quinolinato)‐4‐phenylphenolate aluminum (BAlq)/LiF/Al configurations were fabricated. The performance of the PF‐TBTT device was found to be almost three times better than that of the PF‐TTZT device, which is because electron injection from the cathode to PF‐TBTT is much easier than for PF‐TTZT. We also investigated the planarity and frontier orbitals of the electron donor‐acceptor (D‐A) moieties with computational calculations using ab initio Hartree–Fock with the split‐valence 6‐31G* basis set. These calculations show that TBTT has a more nonplanar structure than TTZT and that the bithiazole moiety is more electron‐withdrawing than thiazolothiazole. These calculations are in good agreement with the experimental results. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7148–7161, 2008 相似文献
10.
Jong‐Beom Baek Frank W. Harris 《Journal of polymer science. Part A, Polymer chemistry》2005,43(24):6465-6479
A series of extended 6‐substituted quinoxaline AB monomer mixtures, 2‐(4‐fluorophenyl)‐3‐[4‐(4‐hydroxyphenoxy)phenyl]‐6‐substituted quinoxaline and 3‐(4‐fluorophenyl)‐2‐[4‐(4‐hydroxyphenoxy)phenyl]‐6‐substituted quinoxaline, were prepared and polymerized to afford phenylquinoxaline oligomers. High‐molecular‐weight polymers could not be obtained because of the formation of cyclic oligomers. On the basis of matrix‐assisted laser desorption/ionization time‐of‐flight analysis and molecular modeling results, the formation of a cyclic dimer could be a favorable process resulting in low‐molecular‐weight oligomers. They were completely soluble and amorphous, with glass‐transition temperatures varying from 165 to 266 °C, and they had thermooxidative stability, with samples displaying 5% weight loss temperatures of 419–511 °C in nitrogen. The thermal properties of the monomers and resultant polymers dramatically depended on the polarity of the substituents. The monomers and resultant oligomers displayed high fluorescence in tetrahydrofuran solutions and N‐methyl‐2‐pyrrolidinone solutions, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6465–6479, 2005 相似文献
11.
Yaqin Fu Minghao Sun Yonggang Wu Zhishan Bo Dongge Ma 《Journal of polymer science. Part A, Polymer chemistry》2008,46(4):1349-1356
Conjugated polymers containing electron‐transporting, hole‐transporting, and blue light‐emitting units were synthesized by Suzuki polycondensation. These copolymers exhibited excellent thermal and optical stability. Optical investigation indicated that the incorporation of the spirobifluorene units in the polymer main chain could markedly increase the effective conjugation length of polymers. Electrochemical studies showed that the incorporation of spirobifluorene unit could raise the electrochemical stability and improve the electron‐ and hole‐injecting abilities. The electroluminescent results also showed that the introducing of spirobifluorene units could significantly improve the device performance. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1349–1356, 2008 相似文献
12.
Zhaojie Gu Lijun Deng Hao Luo Xia Guo Haohao Li Zhencai Cao Xunshan Liu Xinwei Li Hongyan Huang Yingzi Tan Yong Pei Songting Tan 《Journal of polymer science. Part A, Polymer chemistry》2012,50(18):3848-3858
A series of novel low band gap polymers containing conjugated side chains with 4,7‐dithien‐5‐yl‐2,1,3‐benzodiathiazole and different electron‐withdrawing end groups of aldehyde ( PT‐DTBTCHO ), 2‐ethylhexyl cyanoacetate ( PT‐DTBTCN ), 1,3‐diethyl‐2‐thiobarbituric acid ( PT‐DTBTDT ), and electron‐donating end group of 2‐methylthiophene ( PT‐DTBTMT ) have been designed and synthesized. All polymers exhibit good solubility in common organic solvents, film‐forming ability, and thermal stability. These conjugated polymers show the broad ultraviolet‐visible absorption and the narrow optical band gaps in the range of 1.65–1.90 eV. Through changing the end group of conjugated side chains, the photophysical properties and energy levels of the polymers were tuned effectively. Bulk heterojunction solar cells based on the blend of these polymers and (6,6)‐phenyl‐C61‐butyric acid methyl ester (PC61BM) reached the best power conversion efficiency (PCE) of 2.72%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
13.
Soluble, fluorescent, terpyridine‐substituted, conjugated polymers were prepared and characterized. The polymer chains included a defined oligo(phenylenevinylene) fragment, on which the terpyridine‐functional group was attached. The polymers were blue‐fluorescent with emission peaks at 400–427 nm in tetrahydrofuran solutions. Upon chelation with the Zn(II) cation, the emission maxima were shifted to a longer wavelength by as much as 113 to 506–526 nm. A model compound was also prepared to aid the structural characterization. The ratio of terpyridine to Zn2+ in the polymer complex was found to be 1:1 on the basis of spectroscopic evidence, which included mass spectrometry, 1H NMR, and Job titration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2338–2345, 2006 相似文献
14.
Rajalingam Agneeswari Vellaiappillai Tamilavan Myungkwan Song Jae‐Wook Kang Sung‐Ho Jin Myung Ho Hyun 《Journal of polymer science. Part A, Polymer chemistry》2013,51(10):2131-2141
To explore the aptitude of 1,2,4‐oxadiazole‐based electron‐acceptor unit in polymer solar cell applications, we prepared four new polymers (P1–P4) containing 1,2,4‐oxadiazole moiety in their main chain and applied them to solar cell applications. Thermal, optical, and electrochemical properties of the polymers were studied using thermogravimetric, absorption, and cyclic voltammetry analysis, respectively. All four polymers showed high thermal stability (5% degradation temperature over 335 °C), and the optical band gaps were calculated to be 2.20, 1.72, 1.37, and 1.74 eV, respectively, from the onset wavelength of the film‐state absorption band. The energy levels of the polymers were found to be suitable for bulk heterojunction (BHJ) solar cell applications. The BHJ solar cells were prepared by using the synthesized polymers as a donor and PC71BM as an electron acceptor with the configuration of ITO/PEDOT:PSS/polymer:PC71BM (1:3 wt %)/LiF/Al. One of the polymers was found to show the maximum power conversion efficiency of 1.33% with a Jsc of 4.95 mA/cm2, a Voc of 0.68 V, and a FF of 40%, measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
15.
Yu‐Rim Shin Woo‐Hyung Lee Jong Baek Park Ji‐Hoon Kim Sang Kyu Lee Won Suk Shin Do‐Hoon Hwang In‐Nam Kang 《Journal of polymer science. Part A, Polymer chemistry》2016,54(4):498-506
Two donor–acceptor conjugated polymers, PTSSO‐TT and PTSSO‐BDT, composed of acenaphtho[1,2‐c]thiophene ‐ S,S‐dioxide (TSSO) as a new electron acceptor and thienothiophene (TT) or benzo[1,2‐b:4,5‐b']dithiophene (BDT) as electron donors, were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PTSSO‐TT and PTSSO‐BDT were found to be 15100 and 26000 Da, with dispersity of 1.8 and 2.4, respectively. The band‐gap energies of PTSSO‐TT and PTSSO‐BDT are 1.56 and 1.59 eV, respectively. The HOMO levels of PTSSO‐TT and PTSSO‐BDT are ?5.4 and ?5.5 eV, respectively. These results indicate that the inclusion of TSSO accepting units into polymers is a very effective method for lowering their HOMO energy levels. The field‐effect mobilities of PTSSO‐TT and PTSSO‐BDT were determined to be 1.5 × 10?3 and 4.5 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PTSSO‐TT as the active layer was found to exhibit a power conversion efficiency (PCE) of 3.79% with an open circuit voltage of 0.71 V under AM 1.5 G (100 mW cm?2) conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 498–506 相似文献
16.
Design and synthesis of unique photoluminescent triptycene-based porous polymers (TBP-OH and TBP-NH2) bearing active functional groups is described herein. Pd catalyzed Sonogashira cross-coupling reaction was utilized to obtain these polymeric networks that are nanoporous and strongly fluorescent in THF. In solid state, these polymers demonstrated CO2 uptake up to 92 mg g?1 at 273 K/1bar and H2 up to 16 mg g?1 at 77 K/1bar which may be attributed to the presence of 3D robust triptycene and CO2-philic groups –OH and –NH2 in their polymeric framework. TBP-OH and TBP-NH2 also selectively capture CO2 over nitrogen and methane. CO2 capture by TBP-OH and TBP-NH2 is a physisorption process and hence reversible in nature. Suspensions of TBP-OH and TBP-NH2 in THF are strongly fluorescent and are also capable of detecting picric acid (an environmental pollutant and explosive) in trace amounts. The Stern–Volmer quenching constants (Ksv) for detection of picric acid (PA) are in the order of 105 M?1. 相似文献
17.
Bungo Ochiai Ikuyoshi Tomita Takeshi Endo 《Journal of polymer science. Part A, Polymer chemistry》2001,39(7):1016-1023
The anionic polymerization of derivatives of 4‐phenyl‐1‐buten‐3‐yne was carried out to investigate the effect of substituents on the polymerization behavior. The polymerization of 4‐(4‐fluorophenyl)‐1‐buten‐3‐yne and 4‐(2‐fluorophenyl)‐1‐buten‐3‐yne in tetrahydrofuran at −78 °C with n‐BuLi/sparteine as an initiator gave polymers consisting of 1,2‐ and 1,4‐polymerized units in quantitative yields with ratios of 80/20 and 88/12, respectively. The molecular weights of the polymers were controlled by the ratio of the monomers to n‐BuLi, and the distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), supporting the living nature of the polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1016–1023, 2001 相似文献
18.
M. Jayakannan Paul A. Van Hal Ren A. J. Janssen 《Journal of polymer science. Part A, Polymer chemistry》2002,40(14):2360-2372
Novel alternating conjugated copolymers ( P1–P6 ) consisting of an electron‐deficient benzothiadiazole and a variety of electron‐rich thiophene‐arene‐thiophene units were synthesized by palladium‐catalyzed polycondensations (Stille and Suzuki reactions), aiming at processable materials with a reduced optical band gap. The structures of P1–P6 were confirmed by 1H NMR and 13C NMR, and their molecular weights were determined by size exclusion chromatography. In the Suzuki polycondensation, the role of the catalyst [Pd(PPh3)4 and Pd(OAc)2] on the resulting molecular weight was investigated. Pd(OAc)2 enhances the molecular weight of the polymers for both thiophene and phenylene bis‐boronic esters as compared with Pd(PPh3)4. The optical properties of the polymers were examined in solution and the solid state. The polymers with n‐octyl substituents ( P1 , P4 , P5 , and P6 ) on the thiophene rings possessed less‐planar structures as a result of torsional steric hindrance, and their absorption spectra appeared blueshifted as compared with their unsubstituted analogues ( P2 and P3 ). The electrochemical properties of the polymers were studied using cyclic voltammetry. Although the alkyl substitution affects the oxidation potential, only marginal differences in the reduction potentials were observed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2360–2372, 2002 相似文献
19.
Eunhee Lim Byung‐Jun Jung Hong‐Ku Shim 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):243-253
New electroluminescent polymers (poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene‐co‐benzo[2,3,5]thiadiazole) ( P1) and poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene‐co‐benzo[2,3,5]thiadiazole‐co‐[4‐(2‐ethylhexyloxyl)phenyl]diphenylamine ( P2) ) possess hole‐transporting or electron‐transporting units or both in the main chains. Electron‐deficient benzothiadiazole and electron‐rich triphenylamine moieties were incorporated into the polymer backbone to improve the electron‐transporting and hole‐transporting characteristics, respectively. P1 and P2 show greater solubility than poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene ( PFTT ), without sacrificing their good thermal stability. Moreover, owing to the incorporation of the electron‐deficient benzothiadiazole unit, P1 and P2 exhibit remarkably lower LUMO levels than PFTT , and thus, it should facilitate the electron injection into the polymer layer from the cathode electrode. Consequently, because of the balance of charge mobility, LED devices based on P1 and P2 exhibit greater brightness and efficiency (up to 3000 cd/m2 and 1.35 cd/A) than devices that use the pristine PFTT . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 243–253, 2006 相似文献
20.
David P. Cole Ezat Khosravi Osama M. Musa 《Journal of polymer science. Part A, Polymer chemistry》2016,54(3):335-344
We describe here the first example of the synthesis of 4‐arm star poly(acrylic acid) for use as a water‐soluble drag reducing agent, by applying Cu(0)‐mediated polymerization technique. High molecular weight 4‐arm star poly(tert‐butyl acrylate) (Mn = 3.0–9.0 × 105 g mol?1) was first synthesized using 4,4′‐oxybis(3,3‐bis(2‐bromopropionate)butane as an initiator and a simple Cu(0)/TREN catalyst system. Then, 4‐arm star poly(tert‐butyl acrylate) were subjected to hydrolysis using trifluoroacetic acid resulting in water‐soluble 4‐arm star poly(acrylic acid). Drag reduction test rig analysis showed 4‐arm star poly(acrylic acid) to be effective as a drag reducing agent with drag reduction of 24.3%. Moreover, 4‐arm star poly(acrylic acid) exhibited superior mechanical stability when compared with a linear poly(acrylic acid) and commercially available drag reducing polymers; Praestol and poly(ethylene oxide). The linear poly(acrylic acid), Praestol, and poly(ethylene oxide) all showed a large decrease in drag reduction of 8–12% when cycled 30 times through the drag reduction test rig while, in contrast, 4‐arm star poly(acrylic acid) demonstrated much higher mechanical stability. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 335–344 相似文献