首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用紫外光作为辅助条件,在反胶束体系中采用一步双原位法合成了硝酸(HNO3)、对甲基苯磺酸(TSA)和5-磺基水杨酸(SSA)掺杂的银/聚苯胺(Ag/PANI)纳米复合材料.通过对复合材料进行红外光谱(FTIR)、紫外光谱(UV-Vis)、扫描电镜(SEM)、X射线衍射(XRD)和导电性能的测试,研究了不同质子酸对Ag/PANI纳米复合材料结构、形貌和导电性能的影响.测试结果表明,3种酸掺杂制备的Ag/PANI纳米复合材料均为聚苯胺包覆银粒子的核-壳结构.不同的质子酸掺杂会对Ag/PANI纳米复合材料的电性能有重要影响.在3种酸掺杂的复合材料中,TSA掺杂的复合材料的电导率最佳,为215.14 S·cm-1.  相似文献   

2.
Since the discovery of carbon nanotubes (CNTs) and intrinsically conductive polymers, such as polyaniline (PANI) some research has focused on the development of novel hybrid materials by combining CNT and PANI to achieve their complementary properties. Electrically conductive elastomer nano‐composites containing CNT and PANI are described in the present investigation. The synthesis procedure includes in‐situ inverse emulsion polymerization of aniline doped with dodecylbenzene sulfonic acid in the presence of CNT and dissolved styrene‐isoprene‐styrene (SIS) block copolymer, followed by a precipitation–filtration step. The synthesis step is carried out under ultrasonication. The resulting uniform SIS/CNT/PANI dispersions are stable for long time durations. The incorporation of CNT/PANI in the SIS elastomeric matrix improves thermal, mechanical and electrical properties of the nano‐composites. The formation of continuous three‐dimensional CNT/PANI network, assumed to be responsible for enhancement of the resulting nano‐composite properties, is observed by HRSEM. A relatively low percolation threshold of 0.4 wt.% CNT was determined. The Young's modulus of the SIS/CNT/PANI significantly increases in the presence of CNT. High electrical conductivity levels were obtained in the ternary component systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Core‐shell silver (Ag)–polyaniline (PAni) nanocomposites have been synthesized by the in‐situ gamma radiation‐induced chemical polymerization method. Aqueous solution of aniline, a free‐radical oxidant, and/or silver metal salt were irradiated by γ‐rays. Reduction of the silver salt in aqueous aniline leads to the formation of silver nanoparticles which in turn catalyze oxidation of aniline to polyaniline. The resultant Ag‐PAni nanocomposites were characterized by using different spectroscopy analyses like X‐ray photoelectron, UV–visible, and infrared spectroscopy. The optical absorption bands revealed that the bands at about 400 nm are due to the presence of nanosilver and the blue‐shifted peak at ~ 555 nm is due to the presence of metallic silver within the PAni matrix. X‐ray diffraction pattern clearly indicates the broad amorphous polymer and the sharp metal peaks. Scanning electron microscopy and transmission electron microscopy of the nanocomposite showed a uniform size distribution with spherical and granular morphology. Thermogravimetric analysis revealed that the composites have a higher degradation temperature than polyaniline alone. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5741–5747, 2007  相似文献   

4.
Sulfonated polyaniline‐silver (SPAni‐Ag) hybrid nanocomposites have been synthesized by the in situ reduction using a UV‐curing polymerization method without using any reducing or binding agent. An aqueous solution of aniline and orthoanilinic acid (OA) comonomers, a free‐radical oxidant and silver metal salts were irradiated by UV rays. Reduction of the silver salt in aqueous aniline and OA leads to the formation of silver particles which in turn catalyze the oxidation of comonomers to sulfonated polyaniline (SPAni). The resultant SPAni‐Ag nanocomposites were characterized by using different spectroscopy analyses like UV–visible (UV–Vis), X‐ray diffraction (XRD) and infrared spectroscopy. The absorption bands were revealed to be optically active and the peaks blue‐shifted due to the presence of metallic silver within the SPAni matrix. The XRD patterns displayed both the broad amorphous polymeric and sharp metallic peaks. Scanning electron microscopy and transmission electron microscopy of the nanocomposites showed a uniform size distribution with spherical and granular morphology. Thermogravimetric analysis revealed that the nanocomposites had a better thermal stability than the bulk SPAni. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
采用1-羧甲基-3-甲基咪唑氯化盐离子液体对钠化蒙脱土进行插层改性,然后用苯胺的盐酸溶液进行二次插层,以过硫酸铵为氧化剂,盐酸溶液为掺杂剂,使进入离子液体/蒙脱土(CMMIm/MMT)层间的苯胺(An)发生氧化聚合反应,制备了一种具有良好导电性的聚苯胺/离子液体/蒙脱土复合材料(PANI/CMMIm/MMT).用红外光谱、X-射线衍射,热重分析和DSC对样品进行了表征.结果表明当离子液体/蒙脱土用量为7.5%、盐酸浓度为1mol/L、过硫酸铵与苯胺的摩尔比为1∶1、0℃下反应6h时制备的PANI/CMMIm/MMT纳米复合材料电导率最高,达到了0.3S/cm,是相同条件下聚苯胺/钠化蒙脱土纳米复合材料电导率的2.5倍,聚苯胺的7.5倍.  相似文献   

6.
Cerium dioxide/polyaniline core-shell nanocomposites   总被引:4,自引:0,他引:4  
The preparation of CeO2/polyaniline (CeO2/PANI) core-shell nanocomposites via chemical oxidation of aniline using CeO2 as an oxidant is reported. TEM, TGA, FT-IR, XPS, and conductivity measurement are used to characterize the resulting composites. TEM measurements reveal that the shape of PANI/CeO2 nanocomposites is different from CeO2 nanoparticles and fibular PANI oxidized with soluble oxidant. Electron diffraction (ED) patterns of CeO2/PANI nanocomposites reveal single crystal of CeO2. FT-IR spectra confirmed the formation of PANI; the amount of PANI in the nanocomposites is estimated by TGA results. The conductivities increase with the increasing ratio of PANI/CeO2. XPS results reveal that in the nanocomposites Ce4+ of CeO2 is reduced to Ce3+. In addition, the degree of protonation of polyaniline obtained from N 1s XPS results in cerium dioxide/polyaniline composites is about 48.52%.  相似文献   

7.
A simple method was used to synthesize the hybrid nanocomposites consisting of the functionalized multiwalled carbon nanotube composites (MWCNTs) with the polyaniline incorporated silver nanoparticles (a-MWCNT/PANI-Ag) through an emulsion polymerization at room temperature in order to enhance the electrical conductivity of polyaniline. The electrical conductivity of the composite with the incorporated Ag nanoparticles was 5% higher than the same weight percent for the composite without Ag nanoparticles, and the thermal stability was dramatically increased from 54% for the composite (a-MWCNT/PANI) to 69% through the incorporation of the Ag nanoparticles at 830°C. Additionally, the advantages of the Ag nanoparticles, including the improved electrical and thermal properties without damage to the polyaniline structure, were confirmed using FTIR and Raman spectroscopy.  相似文献   

8.
In this study, a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag (PANI/PVA/Ag) has been successfully synthesized. The chemical reduction method was used to produce Ag nanoparticle colloidal solution from Ag+ ions. The polymerization of aniline occurred in situ for the preparation of polyaniline (PANI) in the presence of ammonium persulfate. With exposure to Ag nanoparticles on the PANI/PVA composite, a new nanocomposite was obtained. The morphology and particle size of the novel nanocomposite was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) analyses. According to XRD analysis, the size of nanoparticles was found to be in the range of 10–17 nm. SEM images showed the favored shape of nanoparticles as triangle which is a benign shape for antibacterial analysis. The antibacterial activity of the obtained nanocomposite was also evaluated against Gram positive bacteria Staphylococcus aureus (Staph. aureus) and Gram negative Escherichia coli (E. coli) using the paper disk diffusion method. The antibacterial study showed that the PANI/PVA composite did not have a very good antibacterial activity but PANI/PVA/Ag nanocomposites were found to be effective against two bacteria.  相似文献   

9.
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m?1, compared with 20.3 S m?1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1545–1554  相似文献   

10.
By means of a facilely designed strategy, we successfully fabricated the multilayer and conductive organo-silica/polystyrene/polyaniline (organo-silica/PS/PANi) composite particles. First, organo-silica/PS core/shell composite particles were synthesized by seeded emulsion polymerization and the vinyl groups located on the surface of organo-silica nanoparticles were used to induce in situ polymerization of styrene. The influence of the route of the addition of styrene on the morphology of organo-silica/PS composite particles was investigated. Then, the coating of organo-silica/PS composite particles with PANi was achieved by virtue of the "Swelling-Diffusion-Interfacial-Polymerization Method" (SDIPM). The whole preparation process was monitored by transmission electron microscope, scanning electron microscope, Fourier transform infrared, Raman spectroscopy, dynamic light scattering, and thermogravimetry. As a result, the multilayer and conductive organo-silica/PS/PANi nanocomposites possessed of a uniform size and well-defined morphology, and furthermore, their structure could be well controlled by simply changing the weight ratio of aniline/PS.  相似文献   

11.
Summary: Cellulose nanofibrils (CNF) were extracted by acid hydrolysis from cotton microfibrils and nanocomposites with polyaniline doped with dodecyl benzenesulphonic acid (PANI-DBSA) were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA to aniline and aniline to oxidant were varied in situ and the nanocomposites characterized by four probe DC electrical conductivity, ultraviolet-visible-near infrared (UV-Vis - NIR) and Fourier-transform infrared (FTIR) spectroscopies and X-ray diffraction (XRD). FTIR and UV-Vis/NIR characterization confirmed the polymerization of PANI onto CNF surfaces. Electrical conductivity of about 10−1 S/cm was achieved for the composites; conductivity was mostly independent of DBSA/aniline (between 2 and 4) and aniline/oxidant (between 1 and 5) molar ratios. X-ray patterns of the samples showed crystalline peaks characteristic of cellulose I for CNF samples, and a mixture of both characteristic peaks of PANI and CNF for the nanocomposites. Field emission scanning electron microscopy (FESEM) characterization corroborated the abovementioned results showing that PANI coated the surface of the nanofibrils.  相似文献   

12.
A novel template guided enzymatic approach has been developed to synthesize optically active conducting polyaniline (PANI) nanocomposites in the presence of H2O2 as an oxidant, using (+) and (-) 10-camphorsulfonic acid (CSA) as a dopant and chiral inductor. The formation of chiral polyaniline in the nanocomposites was confirmed by circular dichroism (CD). Interestingly, the CD spectra of nanocomposites formed either with (+) or with (-) CSA show the enzyme itself plays a critical role in controlling the stereospecificity of the polyaniline (PANI) in the nanocomposite. The enzyme used for the polymerization of aniline in the nanocomposite was horseradish peroxidase (HRP). It was shown that this enzyme prefers a specific helical conformation, regardless of whether induced chirality in the complex CSA-aniline is from (+) or (-) CSA. UV-vis spectra show that the polyaniline is in the conducting form, and transmission electron micrographs (TEM) show that the nanocomposites are dispersed nicely with particle size dimensions in the range of 20-50 nm. Electron diffraction patterns of these chiral polymer nanocomposites suggest that these nanocomposites are in both crystalline and amorphous states.  相似文献   

13.
Ternary Ag/Polyaniline/Au nanocomposites were synthesized successfully by immobilizing of Au nanoparticles (NPs) on the surface of Ag/Polyaniline (PANI) nanocomposites. Ag/PANI nanocomposites were prepared via in situ chemical polymerization of aniline in the presence of 4-aminothiophenol (4-ATP) capped silver colloidal NPs. Then, uniform gold (Au) NPs were assembled on the surface of resulted Ag/PANI nanocomposites through electrostatic interaction to get Ag/Polyaniline/Au nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), ultraviolet visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). Moreover, Ag/PANI/Au nanocomposites were immobilized on the surface of a glassy carbon electrode and showed enhanced electrocatalytic activity for the reduction of H2O2 compared with Ag/PANI.  相似文献   

14.
Dendritic polyaniline (PANI) nanoparticles were synthesized via oxidative polymerization of aniline, using ammoniumperoxodisulfate as an oxidant, and CM-chitin as a template. The reaction was performed under acidic conditions and the template was removed after the polymerization was completed. Molecular characterization (including UV-vis, FTIR, TGA, and XRD) suggests that the structure of the synthesized dendritic PANI nanoparticles is identical to that of the emeraldine form of PANI, synthesized by the conventional route (without the addition of the CM-chitin template). SEM images reveal that the dendritic PANI nanoparticles have an average diameter in the nanometer range, and are globular in shape, with radially oriented PANI dendrites; in contrast, irregularly-shaped aggregates of PANI are obtained using the conventional synthesis. It was further found that the size of the dendritic PANI nanoparticles is dependent on the CM-chitin content. The higher the CM-chitin concentration, the smaller is the size of the dendritic PANI nanoparticles obtained. An interpretation of these observations and a possible formation mechanism are proposed based on self-assembly between the CM-chitin chains and the aniline monomer.  相似文献   

15.
Novel electrically conducting and biocompatible composite hydrogel materials comprising of poly (aniline) (PANI) nanoparticles dispersed in a poly (vinyl alcohol) (PVA) – g–poly (acrylic acid) (PAA) matrix were prepared by in situ polymerization of aniline. The prepared ionic hydrogels were evaluated for their water uptake capacity in distilled water. While structural insights into the synthesized polymer was sought by Fourier Transform Infrared (FTIR) spectroscopy and X–Ray Diffraction (XRD) techniques, morphology and dimension of PANI particles embedded into the colored optically semi–transparent polymer films were evaluated by Scanning Electron Microscopy (SEM) analysis and Transmittance Electron Microscopy (TEM) while thermal behavior of composite hydrogel was investigated by Differential Scanning Calorimetry (DSC). Electrical conductivity of composite hydrogels containing different PANI percentage was determined by LCR. Considering the potential of electrically conductive nanocomposites materials in biomedical applications the in vitro blood compatibility of nanocomposites was investigated by employing several in vitro tests.  相似文献   

16.
原位聚合法制备PANI/PET导电织物及其性能分析   总被引:1,自引:0,他引:1  
方娜  王炜 《电化学》2009,15(4):462
在聚酯纤维基材及其织物表面,原位聚合形成厚度约1~2μm聚苯胺包覆层,制得聚苯胺(PANI)/聚酯(PET)导电织物.PANI层优异的导电性能使之成为有广阔发展前景的柔性电磁屏蔽材料.正交试验分析研究了苯胺单体浓度、氧化剂:苯胺摩尔比、掺杂酸浓度、反应时间对PANI包覆层外观形态、与基体结合牢度以及导电性的影响.实验表明:在经适当前处理的PET基材表面,以苯胺单体浓度为0.25mol/L、氧化剂与苯胺摩尔比为1∶1、掺杂酸浓度0.5 mol/L、反应时间60 min、反应温度为0~20℃时制备的PANI/PET导电织物方阻最小,导电性最好;掺杂酸酸性越强,导电性越好.SEM、FTIR及XRD测试表明涤纶织物表面有均匀连续的聚苯胺膜存在.分析表明聚苯胺分子链中氧化结构与还原结构含量基本相等,说明聚苯胺渗入纤维内部,使纤维无定形区面积增加,结晶度减小.  相似文献   

17.
Polyaniline encapsulated silicon (Si/PANI) nanocomposite as anode materials for high-capacity lithium ion batteries has been prepared by an in situ chemical polymerization of aniline monomer in the suspension of Si nanoparticles. The obtained Si/PANI nanocomposite demonstrates a reversible specific capacity of 840 mAh g?1 after 100 cycles at a rate of 100 mA g?1 and excellent cycling stability. The enhanced electrochemical performance can be due to that the polyaniline (PANI) matrix offers a continuous electrically conductive network as well as enhances the compatibility of electrode materials and electrolyte as a result of suppressing volume stress of Si during cycles and preventing the agglomeration of Si nanoparticles.  相似文献   

18.
以苯乙烯(St)、丙烯酸丁酯(BA)和丙烯腈(AN)为单体, 采用乳液聚合的方法制备出单分散苯乙烯-丙烯酸丁酯-丙烯腈三元共聚物[P(St-BA-AN)]种子微球, 再在该种子微球表面包覆聚苯胺(PANI), 制得P(St-BA-AN)/PANI核壳结构复合微球. 采用扫描电镜(SEM)、透射电镜(TEM)、傅里叶变换红外透射光谱(FTIR)和漫反射光谱等测试手段对所制备的种子微球和复合微球的形态、结构和形成机理进行了研究, 并用四探针法测定了核壳结构复合物的导电性. 研究结果表明, 通过改变种子乳液共聚物的组成和加入苯胺的量及氧化剂的量等条件可调控复合微球的电导率. 与P(St-BA)/PANI核壳结构复合微球相比, 在核组成中引入了氰基的P(St-BA-AN)/PANI核壳结构复合微球的电导率明显提高, 当加入苯胺的量为P(St-BA-AN)种子微球与苯胺单体总质量分数的40%时, 其电导率可达到0.71 S/cm. 红外光谱结果证实了P(St-BA-AN)种子微球中的氰基和壳层中聚苯胺的胺基之间存在某种相互作用, 导致核壳结构复合物电导率的提高.  相似文献   

19.
In this study, silica/polystyrene/polyaniline (SiO2/PS/PANI) conductive composite particles were synthesized by four sequential reactions. The nanosized SiO2 particles were synthesized from tetraethoxysilane (TEOS) by a sol–gel process with water as the solvent medium, followed by a surface modification with triethoxyvinylsilane; then the surface modified SiO2 particles were used as seeds to synthesize SiO2/PS composite particles with soapless seeded emulsion polymerization. Finally, the SiO2/PS particles were used as seeds to synthesize the SiO2/PS/PANI conductive composite particles. The sol–gel process of SiO2, the effect of surface modification, and several other factors that influenced polymerization of styrene in the soapless seeded emulsion polymerization will be discussed. Either potassium persulfate (KPS) or 2,2′‐azobis(isobutyramidine) dihydrochloride (AIBA) was used as the initiator to synthesize the uniform SiO2/PS particles successfully, and the cross‐section morphology of the SiO2/PS particles was found to be of a core–shell structure, with SiO2 as the core, and PS as the shell. The SiO2/PS particles were well dispersed in many organic solvents. In the following step to synthesize SiO2/PS/PANI conductive composite particles, sodium dodecyl sulfate (SDS) played an important role, specifically, to absorb aniline onto the surfaces of the SiO2/PS particles to carry out the polymerization of aniline over the entire surface of the particles. The conductivity of the SiO2/PS/PANI composite particles approached that of semiconductive materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 342–354, 2005  相似文献   

20.
《中国化学》2017,35(7):1157-1164
In this work, multifunctional sulfonated polystyrene/polyaniline/silver (SPS /PANI /Ag) nanocomposites are prepared through using sulfonated polystyrene (SPS ) spheres as templates and utilizing polyvinylpyrrolidone (PVP ) as reducing agent and stabilizing agent. Our method is an environmentally friendly method because no toxic reagents are added during the preparation process. Fourier transform infrared spectrum (FTIR ), field emission scanning electron microscopy (FESEM ), and energy disperse spectroscopy (EDX ) results confirmed the formation of PS spheres, SPS spheres, SPS /PANI nanocomposites, and SPS /PANI /Ag nanocomposites. Powder X‐ray diffraction (XRD ) patterns indicate that the obtained Ag nanoparticles are crystalline. Solubilities measurements show that SPS /PANI /Ag nanocomposites have improved solubilities when compared to pure PANI in common organic solvents and deionized water. Antibacterial studies show that SPS /PANI /Ag nanocomposites can greatly inhibit the growth of Escherichia coli and Staphylococcus aureus . Anticorrosion studies show that the incorporation of SPS /PANI /Ag nanocomposites in waterborne alkyd resin can greatly promote the anticorrosive efficiency of waterborne alkyd resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号