首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In this paper we present a robust conjugate duality theory for convex programming problems in the face of data uncertainty within the framework of robust optimization, extending the powerful conjugate duality technique. We first establish robust strong duality between an uncertain primal parameterized convex programming model problem and its uncertain conjugate dual by proving strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem under a regularity condition. This regularity condition is not only sufficient for robust duality but also necessary for it whenever robust duality holds for every linear perturbation of the objective function of the primal model problem. More importantly, we show that robust strong duality always holds for partially finite convex programming problems under scenario data uncertainty and that the optimistic counterpart of the dual is a tractable finite dimensional problem. As an application, we also derive a robust conjugate duality theorem for support vector machines which are a class of important convex optimization models for classifying two labelled data sets. The support vector machine has emerged as a powerful modelling tool for machine learning problems of data classification that arise in many areas of application in information and computer sciences.  相似文献   

2.
This paper presents a set of complete solutions and optimality conditions for a nonconvex quadratic-exponential optimization problem. By using the canonical duality theory developed by the first author, the nonconvex primal problem in n-dimensional space can be converted into an one-dimensional canonical dual problem with zero duality gap, which can be solved easily to obtain all dual solutions. Each dual solution leads to a primal solution. Both global and local extremality conditions of these primal solutions can be identified by the triality theory associated with the canonical duality theory. Several examples are illustrated.  相似文献   

3.
This paper presents a canonical dual approach for solving a nonconvex global optimization problem governed by a sum of 4th-order polynomial and a log-sum-exp function. Such a problem arises extensively in engineering and sciences. Based on the canonical duality–triality theory, this nonconvex problem is transformed to an equivalent dual problem, which can be solved easily under certain conditions. We proved that both global minimizer and the biggest local extrema of the primal problem can be obtained analytically from the canonical dual solutions. As two special cases, a quartic polynomial minimization and a minimax problem are discussed. Existence conditions are derived, which can be used to classify easy and relative hard instances. Applications are illustrated by several nonconvex and nonsmooth examples.  相似文献   

4.
This paper aims to solve a class of CEC benchmark constrained optimization problems that have been widely studied by nature-inspired optimization algorithms. Based on canonical duality theory, these challenging problems can be reformulated as a unified canonical dual problem over a convex set, which can be solved deterministically to obtain global optimal solutions in polynomial time. Applications are illustrated by some well-known CEC benchmark problems, and comparisons with other methods have demonstrated the effectiveness of the proposed approach.  相似文献   

5.
This paper presents a canonical duality theory for solving a general nonconvex constrained optimization problem within a unified framework to cover Lagrange multiplier method and KKT theory. It is proved that if both target function and constraints possess certain patterns necessary for modeling real systems, a perfect dual problem (without duality gap) can be obtained in a unified form with global optimality conditions provided.While the popular augmented Lagrangian method may produce more difficult nonconvex problems due to the nonlinearity of constraints. Some fundamental concepts such as the objectivity and Lagrangian in nonlinear programming are addressed.  相似文献   

6.
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. A robust strong duality theorem is given whenever the Lagrangian function is convex. We provide classes of uncertain non-convex programming problems for which robust strong duality holds under a constraint qualification. In particular, we show that robust strong duality is guaranteed for non-convex quadratic programming problems with a single quadratic constraint with the spectral norm uncertainty under a generalized Slater condition. Numerical examples are given to illustrate the nature of robust duality for uncertain nonlinear programming problems. We further show that robust duality continues to hold under a weakened convexity condition.  相似文献   

7.
This paper presents a canonical duality theory for solving a general nonconvex quadratic minimization problem with nonconvex constraints. By using the canonical dual transformation developed by the first author, the nonconvex primal problem can be converted into a canonical dual problem with zero duality gap. A general analytical solution form is obtained. Both global and local extrema of the nonconvex problem can be identified by the triality theory associated with the canonical duality theory. Illustrative applications to quadratic minimization with multiple quadratic constraints, box/integer constraints, and general nonconvex polynomial constraints are discussed, along with insightful connections to classical Lagrangian duality. Criteria for the existence and uniqueness of optimal solutions are presented. Several numerical examples are provided.  相似文献   

8.
This paper presents a perfect duality theory and a complete set of solutions to nonconvex quadratic programming problems subjected to inequality constraints. By use of the canonical dual transformation developed recently, a canonical dual problem is formulated, which is perfectly dual to the primal problem in the sense that they have the same set of KKT points. It is proved that the KKT points depend on the index of the Hessian matrix of the total cost function. The global and local extrema of the nonconvex quadratic function can be identified by the triality theory [11]. Results show that if the global extrema of the nonconvex quadratic function are located on the boundary of the primal feasible space, the dual solutions should be interior points of the dual feasible set, which can be solved by deterministic methods. Certain nonconvex quadratic programming problems in {\open {R}}^{n} can be converted into a dual problem with only one variable. It turns out that a complete set of solutions for quadratic programming over a sphere is obtained as a by-product. Several examples are illustrated.  相似文献   

9.
pth Power Lagrangian Method for Integer Programming   总被引:1,自引:0,他引:1  
When does there exist an optimal generating Lagrangian multiplier vector (that generates an optimal solution of an integer programming problem in a Lagrangian relaxation formulation), and in cases of nonexistence, can we produce the existence in some other equivalent representation space? Under what conditions does there exist an optimal primal-dual pair in integer programming? This paper considers both questions. A theoretical characterization of the perturbation function in integer programming yields a new insight on the existence of an optimal generating Lagrangian multiplier vector, the existence of an optimal primal-dual pair, and the duality gap. The proposed pth power Lagrangian method convexifies the perturbation function and guarantees the existence of an optimal generating Lagrangian multiplier vector. A condition for the existence of an optimal primal-dual pair is given for the Lagrangian relaxation method to be successful in identifying an optimal solution of the primal problem via the maximization of the Lagrangian dual. The existence of an optimal primal-dual pair is assured for cases with a single Lagrangian constraint, while adopting the pth power Lagrangian method. This paper then shows that an integer programming problem with multiple constraints can be always converted into an equivalent form with a single surrogate constraint. Therefore, success of a dual search is guaranteed for a general class of finite integer programming problems with a prominent feature of a one-dimensional dual search.  相似文献   

10.
In solving certain optimization problems, the corresponding Lagrangian dual problem is often solved simply because in these problems the dual problem is easier to solve than the original primal problem. Another reason for their solution is the implication of the weak duality theorem which suggests that under certain conditions the optimal dual function value is smaller than or equal to the optimal primal objective value. The dual problem is a special case of a bilevel programming problem involving Lagrange multipliers as upper-level variables and decision variables as lower-level variables. Another interesting aspect of dual problems is that both lower and upper-level optimization problems involve only box constraints and no other equality of inequality constraints. In this paper, we propose a coevolutionary dual optimization (CEDO) algorithm for co-evolving two populations—one involving Lagrange multipliers and other involving decision variables—to find the dual solution. On 11 test problems taken from the optimization literature, we demonstrate the efficacy of CEDO algorithm by comparing it with a couple of nested smooth and nonsmooth algorithms and a couple of previously suggested coevolutionary algorithms. The performance of CEDO algorithm is also compared with two classical methods involving nonsmooth (bundle) optimization methods. As a by-product, we analyze the test problems to find their associated duality gap and classify them into three categories having zero, finite or infinite duality gaps. The development of a coevolutionary approach, revealing the presence or absence of duality gap in a number of commonly-used test problems, and efficacy of the proposed coevolutionary algorithm compared to usual nested smooth and nonsmooth algorithms and other existing coevolutionary approaches remain as the hallmark of the current study.  相似文献   

11.
《Optimization》2012,61(8):1139-1151
Quadratically constrained quadratic programming is an important class of optimization problems. We consider the case with one quadratic constraint. Since both the objective function and its constraint can be neither convex nor concave, it is also known as the ‘generalized trust region subproblem.’ The theory and algorithms for this problem have been well studied under the Slater condition. In this article, we analyse the duality property between the primal problem and its Lagrangian dual problem, and discuss the attainability of the optimal primal solution without the Slater condition. The relations between the Lagrangian dual and semidefinite programming dual is also given.  相似文献   

12.
In this paper, we present a duality theory for fractional programming problems in the face of data uncertainty via robust optimization. By employing conjugate analysis, we establish robust strong duality for an uncertain fractional programming problem and its uncertain Wolfe dual programming problem by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. We show that our results encompass as special cases some programming problems considered in the recent literature. Moreover, we also show that robust strong duality always holds for linear fractional programming problems under scenario data uncertainty or constraint-wise interval uncertainty, and that the optimistic counterpart of the dual is tractable computationally.  相似文献   

13.
本文提出了一种整数规划中的指数一对数对偶.证明了此指数-对数对偶方法具有的渐近强对偶性质,并提出了不需要进行对偶搜索来解原整数规划问题的方法.特别地,当选取合适的参数和对偶变量时,原整数规划问题的解可以通过解一个非线性松弛问题来得到.对具有整系数目标函数及约束函数的多项式整规划问题,给出了参数及对偶变量的取法.  相似文献   

14.
For certain types of mathematical programming problems, a related dual problem can be constructed in which the objective value of the dual problem is equal to the objective function of the given problem. If these two problems do not have equal values, a duality gap is said to exist. No such gap exists for pairs of ordinary dual linear programming problems, but this is not the case for linear programming problems in which the nonnegativity conditionx ? 0 is replaced by the condition thatx lies in a certain convex setK. Duffin (Ref. 1) has shown that, whenK is a cone and a certain interiority condition is fulfilled, there will be no duality gap. In this note, we show that no duality gap exists when the interiority condition is satisfied andK is an arbitrary closed convex set inR n .  相似文献   

15.
16.
We consider two-stage stochastic programming problems with integer recourse. The L-shaped method of stochastic linear programming is generalized to these problems by using generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined via general duality theory and can be generated when the second stage problem is solved by standard techniques. Finite convergence of the method is established when Gomory’s fractional cutting plane algorithm or a branch-and-bound algorithm is applied.  相似文献   

17.
The existence of efficient techniques such as subgradient search for solving Lagrangean duals has led to some very successful applications of Lagrangean duality in solving specially structured discrete problems. While surrogate duals have been theoretically shown to provide stronger bounds, the complexity of surrogate dual multiplier search has discouraged their employment in solving integer programs. We have recently suggested a new strategy for computing surrogate dual values that allows us to directly use established Lagrangean search methods for exploring surrogate dual multipliers. This paper considers the problem of incorporating surrogate duality within a branch-and-bound procedure for solving integer programming problems. Computational experience with randomly generated multiconstraint knapsack problems is also reported.  相似文献   

18.
This paper presents a canonical dual approach for solving general nonlinear algebraic systems. By using least square method, the nonlinear system of m-quadratic equations in n-dimensional space is first formulated as a nonconvex optimization problem. We then proved that, by the canonical duality theory developed by the second author, this nonconvex problem is equivalent to a concave maximization problem in ℝ m , which can be solved easily by well-developed convex optimization techniques. Both existence and uniqueness of global optimal solutions are discussed, and several illustrative examples are presented.  相似文献   

19.
A symmetric duality theory for programming problems with homogeneous objective functions was published in 1961 by Eisenberg and has been used by a number of authors since in establishing duality theorems for specific problems. In this paper, we study a generalization of Eisenberg's problem from the viewpoint of Rockafellar's very general perturbation theory of duality. The extension of Eisenberg's sufficient conditions appears as a special case of a much more general criterion for the existence of optimal vectors and lack of a duality gap. We give examples where Eisenberg's sufficient condition is not satisfied, yet optimal vectors exist, and primal and dual problems have the same value.  相似文献   

20.
We consider in this paper the Lagrangian dual method for solving general integer programming. New properties of Lagrangian duality are derived by a means of perturbation analysis. In particular, a necessary and sufficient condition for a primal optimal solution to be generated by the Lagrangian relaxation is obtained. The solution properties of Lagrangian relaxation problem are studied systematically. To overcome the difficulties caused by duality gap between the primal problem and the dual problem, we introduce an equivalent reformulation for the primal problem via applying a pth power to the constraints. We prove that this reformulation possesses an asymptotic strong duality property. Primal feasibility and primal optimality of the Lagrangian relaxation problems can be achieved in this reformulation when the parameter p is larger than a threshold value, thus ensuring the existence of an optimal primal-dual pair. We further show that duality gap for this partial pth power reformulation is a strictly decreasing function of p in the case of a single constraint. Dedicated to Professor Alex Rubinov on the occasion of his 65th birthday. Research supported by the Research Grants Council of Hong Kong under Grant CUHK 4214/01E, and the National Natural Science Foundation of China under Grants 79970107 and 10571116.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号