首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five vanilla-related flavors of food significance, vanillic alcohol (VOH), ethyl maltol (EMA), maltol (MAL), ethyl vanillin (EVA) and vanillin (VAN), were separated using CE microchips with electrochemical detection (CE-ED microchips). A +2 kV driving voltage for both injection and separation operation steps, using a borate buffer (pH 9.5, 20 mM) and 1 M nitric acid in the detection reservoir allowed the selective and sensitive detection of the target analytes in less than 200 s with reproducible control of EOF (RSD(migration times)<3%). The analysis in selected real vanilla samples was focusing on VAN and EVA because VAN is a basic fragrance compound of the vanilla aroma, whereas EVA is an unequivocal proof of adulteration of vanilla flavors. Fast detection of all relevant flavors (200 s) with an acceptable resolution (R(s) >1.5) and a high accuracy (recoveries higher than 90%) were obtained with independence of the matrices and samples examined. These results showed the reliability of the method and the potential use of CE microchips in the food control field for fraudulent purposes.  相似文献   

2.
Vickers JA  Henry CS 《Electrophoresis》2005,26(24):4641-4647
There is a need to develop broadly applicable, highly sensitive detection methods for microchip CE that do not require analyte derivatization. LIF is highly sensitive but typically requires analyte derivatization. Electrochemistry provides an alternative method for direct analyte detection; however, in its most common form, direct current (DC) amperometry, it is limited to a small number of easily oxidizable or reducible analytes. Pulsed amperometric detection (PAD) is an alternative waveform that can increase the number of electrochemically detectable analytes. Increasing sensitivity for electrochemical detection (EC) and PAD requires the isolation of detection current (nA) from the separation current (muA) in a process generally referred to as current decoupling. Here, we present the development of a simple integrated decoupler to improve sensitivity and its coupling with PAD. A Pd microwire is used as the cathode for decoupling and a second Au or Pt wire is used as the working electrode for either EC or PAD. The electrode system is easy to make, requiring no clean-room facilities or specialized metallization systems. Sensitive detection of a wide range of analytes is shown to be possible using this system. Using this system we were able to achieve detection limits as low as 5 nM for dopamine, 74 nM for glutathione, and 100 nM for glucose.  相似文献   

3.
Clinical studies have linked irregular concentrations of uric acid in urine to several diseases. Conventional methods for the measurement of uric acid are however temperature-dependent, expensive, and require labile reagents. The miniaturization of analytical techniques, specifically capillary electrophoresis, offers an ideal alternative for clinical analyses such as uric acid determination. The added benefits include reduced reagent and analyte consumption, decreased maintenance costs, and increased throughput and portability. A microchip capillary electrophoresis-electrochemical system for the analysis of uric acid in urine is described. The poly(dimethylsiloxane) (PDMS)/glass microchip utilizes amperometric detection via an off-chip platinum working electrode. Linear responses from 1 to 165 microM and 15 to 110 microM were found for dopamine and uric acid, respectively. The limit of detection for both compounds was 1 microM. Once characterized, the system was used to measure the concentration of uric acid in a dilute urine sample in less than 30 s. The measured uric acid concentration was verified with the uricase reaction and found to be acceptable. Six additional urine samples were evaluated with the microchip device and the uric acid concentration for each sample was found to be in the expected clinical concentration range.  相似文献   

4.
Apolipoprotein B100(apoB-100) is a major protein of the cholesterol-rich low-density lipoprotein(LDL) and reflects a better assessment of total atherogenic burden to the vascular system than LDL.In this work,a simple and sensitive method has been developed to determine picoliter apoB-100s using the PMMA microfluidic chip coupled with electrochemical detection system. This method performs very well with a detectable linear range of 1-800 pg/mL and a detection limit of 1 pg/mL.A real serum sample has further been detected by this microchip-based biosensor.The results show that this kind of method is practicable and has the potential application in clinical analysis and diagnosis.  相似文献   

5.
A rapid and sensitive DNA targets detection using enzyme amplified electrochemical detection (ED) based on microchip was described. We employed a biotin‐modified DNA, which reacted with avidin‐conjugated horseradish peroxidase (avidin–HRP) to obtain the HRP‐labeled DNA probe and hybridized with its complementary target. After hybridization, the mixture containing dsDNA‐HRP, excess ssDNA‐HRP, and remaining avidin–HRP was separated by MCE. The separations were performed at a separation voltage of +1.6 kV and were completed in less than 100 s. The HRP was used as catalytic labels to catalyze H2O2/o‐aminophenol reaction. Target DNA could be detected by the HRP‐catalyzed reduction with ED. With this protocol, the limits of quantification for the hybridization assay of 21‐ and 39‐mer DNA fragments were of 8×10?12 M and 1.2×10?11 M, respectively. The proposed method has been applied satisfactorily in the analysis of Escherichia coli genomic DNA. We selected the detection of PCR amplifications from the gene of E. coli to test the real applicability of our method. By using an asymmetric PCR protocol, we obtained ssDNA targets of 148 bp that could be directly hybridized by the single‐stranded probe and detected with ED.  相似文献   

6.
This paper presents the development of a sandwich immunoassay in disposable plastic microchips. Photoablated microchannels with integrated electrodes have been used for the development of enzyme-linked-immunosorbent-assay (ELISA). The presence of the electrode inside the 40 nL microchannel enables the detection of the redox active enzyme substrate directly inside the reaction channel. Furthermore, due to the small diffusion distances, each incubation time can be reduced to five minutes instead of a few hours in standard microtiterplates. The initial characterisation of this immunoassay has been performed with a large protein complex D-Dimer-alkaline phosphatase. This system was used for the detection of immobilised antibodies on the surface of the photoablated microchannel. In a second step, a sandwich immunoassay with a horseradish peroxidase-secondary antibody conjugate (HRP-conjugate) was used to detect D-Dimer between 0.1 and 100 nM, which is the relevant concentration range of the clinical tests.  相似文献   

7.
The present report describes a new analysis strategy for microchip capillary electrophoresis with pulsed amperometric detection and its application to the determination of glucose. The addition of sodium dodecyl sulfate (SDS) to the mobile phase and detection reservoir stabilized flow rates and enhanced the detection signal for glucose. A higher pH (compared to the running buffer) was used at the waste reservoir in order to improve the detection performance while maintaining good separations. To our knowledge, this is the first report describing the use of post-column pH modification using microchip electrophoresis. Under optimum conditions, a linear relationship between the peak current and the concentration of glucose was found between 10−2-10−5 M, with a limit-of-detection of 1.2 μM. In addition, the separation of glucosamine and glucose was performed at pH 7.1 while the detection was performed at pH 11 to demonstrate the ability to use post-column pH modification.  相似文献   

8.
Chen G  Lin Y  Wang J 《Talanta》2006,68(3):497-503
During the past decade, significant progress in the development of miniaturized microfluidic systems has occurred due to the numerous advantages of microchip analysis. This review focuses on recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.  相似文献   

9.
Vrouwe EX  Luttge R  van den Berg A 《Electrophoresis》2004,25(10-11):1660-1667
The direct measurement of lithium in whole blood is described. Using microchip capillary electrophoresis (CE) with defined sample loading and applying the principles of column coupling, alkali metals were determined in a drop of whole blood. Blood collected from a finger stick was mixed with anticoagulant and transferred onto the chip without extraction or removal of components. The electrokinetic transport of red blood cells inside the channels was studied to find sample loading conditions suitable for the analysis of lithium without injecting cells into the separation channel. Both bare glass chips and chips coated with polyacrylamide were used showing the behavior of the cells under different electroosmotic flow conditions. In serum a detection limit for lithium of 0.4 mmol/L was reached. Proteins quickly contaminated untreated chip surfaces but devices with coating gave reproducible electropherograms. In addition, potassium and sodium were also detected in the same separation run. To our knowledge, this is the first device to directly measure ions in whole blood with the use of capillary zone electrophoresis on a microchip.  相似文献   

10.
Recent advances and key strategies in capillary electrophoresis and microchip CE with electrochemical detection (ECD) and electrochemiluminescence (ECL) detection are reviewed. This article consists of four main parts: CE-ECD; microchip CE-ECD; CE-ECL; and microchip CE-ECL. It is expected that ECD and ECL will become powerful tools for CE microchip systems and will lead to the creation of truly disposable devices. The focus is on papers published in the last two years (from 2005 to 2006).  相似文献   

11.
Wang W  Zhao L  Jiang LP  Zhang JR  Zhu JJ  Chen HY 《Electrophoresis》2006,27(24):5132-5137
A simple method for EOF measurement by detection of sampling zones with end-channel amperometry in microchip CE is developed. This method is based on the principle of the Kohlrausch regulating function (KRF). A dilute electroactive ionic species is added to the BGE as a continuously eluting electrophore which is used as a probe. When a BGE-like sample at a different concentration is injected, a peak of sampling zone appears and the migration time is related to EOF. In a microchip CE with hybrid PDMS/glass channel, a cathodic EOF of the hybrid glass/PDMS microchip was measured by end-channel amperometry; the effects of sample concentration and different probes on EOF rate were discussed. The present method was applied to monitor EOF rates in glass and in PDMS microchips. There was no significant difference between the values of EOF rates measured by the present method and the current-monitoring method. Detection of nonelectroactive analytes K(+), Na(+), and Li(+) can also be accomplished by the indirect amperometric method. Hence, the effective mobility of analyte can be accurately obtained.  相似文献   

12.
A method based on microchip electrophoresis with electrochemical (EC) detection has been developed for the simultaneous determination of Yellow AB, Red 2G, Sunset Yellow, New Coccine, and Amaranth which are azo-dyes frequently added to foodstuffs. Factors affecting both separation and detection processes were examined and optimized, with best performance achieved by using a 10 mM phosphate buffer (pH 11) as BGE solution and applying a voltage of 2500 V both in the separation and in the electrokinetic injection (duration 4 s). Under these optimal conditions, the target dye analytes could be separated and detected within 300 s by applying a detection potential of -1.0 V (vs. Ag/AgCl) to the glassy carbon (GC) working electrode. The recorded peaks were characterized by a good repeatability (RSD=1.8-3.2%), high sensitivity, and a wide linear range. Detection limits of 3.8, 3.4, 3.6, 9.1, 15.1 microM were obtained for Yellow AB, Red 2G, Sunset Yellow, New Coccine, and Amaranth, respectively. Fast, sensitive, and selective response makes the new microchip protocol very attractive for the quantitative analysis of commercial soft drinks and candies.  相似文献   

13.
This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy-embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified as is done with electrochemical flow cells used in liquid chromatography.  相似文献   

14.
Significant progress in the development of miniaturized microfluidic systems has occurred since their inception over a decade ago. This is primarily due to the numerous advantages of microchip analysis, including the ability to analyze minute samples, speed of analysis, reduced cost and waste, and portability. This review focuses on recent developments in integrating electrochemical (EC) detection with microchip capillary electrophoresis (CE). These detection modes include amperometry, conductimetry, and potentiometry. EC detection is ideal for use with microchip CE systems because it can be easily miniaturized with no diminution in analytical performance. Advances in microchip format, electrode material and design, decoupling of the detector from the separation field, and integration of sample preparation, separation, and detection on-chip are discussed. Microchip CEEC applications for enzyme/immunoassays, clinical and environmental assays, as well as the detection of neurotransmitters are also described.  相似文献   

15.
Until now, no LC method is described to determine the purity and content of spectinomycin without prior derivatization. A reversed-phase ion-pair LC method using a base deactivated column and pulsed electrochemical detection is described. The mobile phase consisted of an aqueous solution containing 5.8 g/l pentafluoropropionic acid, 1.25 g/l potassium dihydrogen phosphate and 5.5 ml/l tetrahydrofuran. The pH was adjusted to 6.25 using dilute NaOH solution. An experimental design was used to optimize the chromatographic parameters and to check the robustness. The quality of separation was investigated on different stationary phases. The method allows the separation of spectinomycin from its related substances as well as some other components of unknown identity. The total time of analysis is 65 min. A number of commercial samples were examined using this method.  相似文献   

16.
A new SU-8 based microchip capillary electrophoresis (MCE) device has been developed for the first time with integrated electrochemical detection. Embedded electrophoretic microchannels have been fabricated with a multilayer technology based on bonding and releasing steps of stacked SU-8 films. This technology has allowed the monolithic integration in the device of the electrochemical detection system based on platinum electrodes. The fabrication of the chips presented in this work is totally compatible with reel-to-reel techniques, which guarantee a low cost and high reliability production. The influence of relevant experimental variables, such as the separation voltage and detection potential, has been studied on the SU-8 microchip with an attractive analytical performance. Thus, the effective electrical isolation of the end-channel amperometric detector has been also demonstrated. The good performance of the SU-8 device has been proven for separation and detection of the neurotransmitters, dopamine (DA) and epinephrine (EP). High efficiency (30,000-80,000 N/m), excellent precision, good detection limit (450 nM) and resolution (0.90-1.30) has been achieved on the SU-8 microchip. These SU-8 devices have shown a better performance than commercial Topas (thermoplastic olefin polymer of amorphous structure) microchips. The low cost and versatile SU-8 microchip with integrated platinum film electrochemical detector holds great promise for high-volume production of disposable microfluidic analytical devices.  相似文献   

17.
Lu Q  Wu P  Collins GE 《Electrophoresis》2007,28(19):3485-3491
Rapid and quantitative determination of sodium monofluoroacetate in diluted fruit juices (dilution 1:9 v/v in deionized water) and tap water was performed by microchip CE, using contactless conductivity detection. A separation buffer consisting of 20 mM citric acid and histidine at pH 3.5 enabled the detection of the monofluoroacetate (MFA) anion in diluted apple juice, cranberry juice, and orange juice without lengthy sample pretreatments. The analyte was very well separated from interfering anionic species present in juices and tap water. LODs in diluted juices and tap water were determined to be 125, 167, 138, and 173 microg/L for tap water, apple juice, cranberry juice, and orange juice, respectively, based upon an S/N of 3:1. Taking into account the dilution factor, the LODs for juice samples range from 1 to 2 mg/L, which is adequate for monitoring the toxicity of MFA in these juice beverages and tap water. The calibration curves for MFA in diluted fruit juices were linear over the range of 500 microg/L to 80 mg/L. The total analysis time for detecting the MFA anion in fruit juices was less than 5 min, which represents a considerable reduction in analysis time compared to other analytical methods currently used in food analysis.  相似文献   

18.
A capillary electrophoresis (CE) microchip made of a new and promising polymeric material: Topas (thermoplastic olefin polymer of amorphous structure), a cyclic olefin copolymer with high chemical resistance, has been tested for the first time with analytical purposes, employing an electrochemical detection. A simple end-channel platinum amperometric detector has been designed, checked, and optimized in a poly-(methylmethacrylate) (PMMA) CE microchip. The end-channel design is based on a platinum wire manually aligned at the exit of the separation channel. This is a simple and durable detection in which the working electrode is not pretreated. H(2)O(2) was employed as model analyte to study the performance of the PMMA microchip and the detector. Factors influencing migration and detection processes were examined and optimized. Separation of H(2)O(2) and L-ascorbic acid (AsA) was developed in order to evaluate the efficiency of microchips using different buffer systems. This detection has been checked for the first time with a microchip made of Topas, obtaining a good linear relationship for mixtures of H(2)O(2) and AsA in different buffers.  相似文献   

19.
Traditional Chinese herbal medicine has long enjoyed the reputation of the world's most advanced system of natural medicine. Pinellia ternata is one of the most commonly used herbs in the traditional Chinese medical science. In this study, five representative ingredients of Pinellia ternata guanosine, methionine, glycine, 3,4‐dihydroxybenzaldehyde, and homogentisic acid, were assayed using simple derivatization procedures. Under optimized experimental condition, five analytes in Pinellia ternata were rapidly separated and detected using microchip electrophoresis, affording the benefits of speed, minimal sample requirements, and sensitive on‐the‐chip electrochemical detection, in 5 min with linearity over a concentration of 20–500 μM (R= 0.994) with nearly complete recovery (95.6–98.5%).  相似文献   

20.
A fully disposable microanalytical device based on combination of poly(methylmethacrylate) (PMMA) capillary electrophoresis microchips and thick-film electrochemical detector strips is described. Variables influencing the separation efficiency and amperometric response, including separation voltage or detection potential are assessed and optimized. The versatility, simplicity and low-cost advantages of the new design are coupled to an attractive analytical performance, with good precision (relative standard deviation RSD = 1.68% for n = 10). Applicability for assays of mixtures of hydrazine, phenolic compounds, and catecholamines is demonstrated. Such coupling of low-cost PMMA-based microchips with thick-film electrochemical detectors holds great promise for mass production of single-use micrototal analytical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号