首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown by atomic force microscopy that nanoparticles formed upon ablation of surface of single-crystal and porous silicon by femtosecond laser pulses have a lateral size from several tens to 200 nm and a height from 2 to 30 nm. Dependences of the nanoparticle sizes and surface concentrations on the residual pressure, which demonstrate the gas atmosphere influence on the nanoparticle formation, are obtained.  相似文献   

2.
Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles entrained in argon, nitrogen and helium at a variety of gas pressures. Nanoparticles produced in this new, high-volume nanoparticle production technique are compared with our earlier experiments using laser ablation of static microparticles. Transmission electron micrographs of the samples show the nanoparticles to be spherical and highly non-agglomerated under all conditions tested. These micrographs were analyzed to determine the effect of carrier gas type and pressure on size distributions. We conclude that mean diameters can be controlled from 4 to 20 nm by the choice of gas type and pressure. The smallest nanoparticles were produced in helium, with mean sizes increasing with increasing molecular weight of the carrier gas. These results are discussed in terms of a model based on cooling via collisional interaction of the nanoparticles, produced in the laser exploded microparticle, with the ambient gas.  相似文献   

3.
We numerically examine the mechanisms involved in nanoparticle formation by laser ablation of metallic targets in vacuum and in liquid. We consider the very early ablation stage providing initial conditions for much longer plume expansion processes. In the case of ultrashort laser ablation, the initial population of primary nanoparticles is formed at this stage. When a liquid is present, the dynamics of the laser plume expansion differs from that in vacuum. Low compressibility of the ambient liquid results in strong confinement conditions. As a result, ablation threshold rises drastically, the ablated material is compressed, part of it becomes supersaturated and the backscattered material additionally heats the target. The extension of a molten layer leads to the additional ablation at a later stage also favoring nanoparticle formation. The obtained results thus explain recent experimental findings and help to predict the role of the experimental parameters. The performed analysis indicates ways of a control over nanoparticle synthesis.  相似文献   

4.
Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles in nitrogen at varying laser fluences. Transmission electron micrographs were analyzed to determine the effect of laser fluence on the nanoparticle size distribution. These distributions exhibited bimodality with a large number of particles in a mode at small sizes (3–6-nm) and a second, less populated mode at larger sizes (11–16-nm). Both modes shifted to larger sizes with increasing laser fluence, with the small size mode shifting by 35% and the larger size mode by 25% over a fluence range of 0.3–4.2-J/cm2. Size histograms for each mode were found to be well represented by log-normal distributions. The distribution of mass displayed a striking shift from the large to the small size mode with increasing laser fluence. These results are discussed in terms of a model of nanoparticle formation from two distinct laser–solid interactions. Initially, laser vaporization of material from the surface leads to condensation of nanoparticles in the ambient gas. Material evaporation occurs until the plasma breakdown threshold of the microparticles is reached, generating a shock wave that propagates through the remaining material. Rapid condensation of the vapor in the low-pressure region occurs behind the traveling shock wave. Measurement of particle size distributions versus gas pressure in the ablation region, as well as, versus microparticle feedstock size confirmed the assignment of the larger size mode to surface-vaporization and the smaller size mode to shock-formed nanoparticles.  相似文献   

5.
Recent studies demonstrated that the process to produce metal and oxide nanoparticles by laser ablation of consolidated microparticles is a convenient and energy-efficient way to prepare nanoparticles. In this work, the novel process is applied to nanoparticle synthesis in the liquid environment and the results are compared with those by the gas-phase process. Metal and oxide nanoparticles are synthesized by pulsed laser ablation of the compacted metal microparticles using a Q-switched Nd:YAG laser in water. It is shown that the process is effective for preparing nanoparticle suspensions having relatively uniform size distributions. While the laser fluence and the degree of compaction strongly influence the size of the produced nanoparticle in air, the sedimentation time is shown to be the most critical factor to determine the mean size of the suspended particles.  相似文献   

6.
We show that the mechanism of nanoparticle formation during femtosecond laser ablation of silicon is affected by the presence of a background gas. Femtosecond laser ablation of silicon in a H2 or H2S background gas yields a mixture of crystalline and amorphous nanoparticles. The crystalline nanoparticles form via a thermal mechanism of nucleation and growth. The amorphous material has smaller features and forms at a higher cooling rate than the crystalline nanoparticles. The background gas also results in the suspension of plume material in the gas for extended periods, resulting in the formation (on a thin film carbon substrate) of unusual aggregated structures including nanoscale webs that span tears in the film. The presence of a background gas provides additional control of the structure and composition of the nanoparticles during short pulse laser ablation. PACS 81.16.-c  相似文献   

7.
This review concerns nanoparticles collected in the form of nanopowder or a colloidal solution by laser ablating a solid target that lies in a gaseous or a liquid environment. The paper discusses the advantages of the method as compared with other methods for nanoparticle synthesis, outlines the factors on which the properties of the produced nanoparticles depend, explains the mechanisms and models involved in the generation of nanoparticles by laser ablation, clarifies the differences between nanoparticle generation in gaseous and liquid environments, presents some experimental desigins and equipment used by the several groups for nanoparticle generation by laser ablation, describes the techniques used for “tuning” the width of the nanoparticles size distribution, and finally presents a few interesting examples of nanoparticles generated by laser ablation.  相似文献   

8.
We have developed an integrated process system for the formation of nanoparticles by pulsed laser ablation (PLA) in helium background gas, size classification using a differential mobility analyzer (DMA), and deposition on a substrate. The DMA has been improved to operate at pressures of less than 10 Torr. The classification resolution of the low-pressure operating DMA (LP-DMA), transporting properties of nanoparticles under low pressure, have been investigated theoretically in order to evaluate the performance of the size classification for the integrated system. By operating the integrated system at less than 10 Torr, we have measured the size distribution of Si nanoparticles in the gas phase formation field by sweeping the applied voltage to the LP-DMA and counting the charged nanoparticle concentration with an electrometer. Moreover, we successfully deposited the classified Si nanoparticles on a substrate by fixing the voltage. We have verified that the integrated system can be applied to the clean physical vapor deposition process for accurately size-controlled nanoparticles.  相似文献   

9.
The experimental parameters that control the surface morphology and size of iron cobalt nanoparticles synthesized at room temperature by pulsed laser ablation deposition (PLAD) technique have been systematically investigated. The nanoparticle synthesis has been achieved at higher operating gas pressures of argon. It was found that nanoparticles upon deposition formed small clusters, the size of which increases with decreasing pressure, increasing laser-energy density, and decreasing target-to-substrate distance. This trend could be attributed to change in the kinetic energy of deposited nanoparticles with varying argon pressure, laser-energy, and target-to-substrate distance. The nanoparticles size and size distribution showed strong dependence on argon pressure and weak dependence on laser-energy density and target-to-substrate distance.  相似文献   

10.
We demonstrate that the nanoparticle formation during laser ablation of metals by short (of a few tens of ps) laser pulses strongly depends on the concentration of surrounding gas. While, at vacuum conditions, nanoparticle formation shows very “sharp” atomic force microscope images of aggregated clusters, following with clear appearance of plasmon resonance on the absorption spectra of deposited films, an addition of gas particles starts to decrease the probability of cluster formation. This process shows a threshold for both helium (33 torr) and xenon (12 torr) above which no surface plasmon resonance and correspondingly no observable nanoparticles on the deposited surfaces were detected. The destruction of nanoparticle formation was attributed to the negative influence of surrounding gas particles on ablated particles aggregation.  相似文献   

11.
Two methods of preparing Fe nanoparticles at atmospheric pressure were conducted using pulsed laser ablation of a 0.5-mm-diameter Fe wire and a bulk Fe target. Passivated α-Fe nanoparticles covered with a shell of γ-Fe2O3 were prepared at different process parameters. The influences of average laser power, repetition rate, pulse duration and carrier-gas pressure on the mean particle size for two laser ablation methods were investigated, respectively. The results show that the target size has a large effect on the nanoparticle preparation though we have the same range of laser process parameters. Except the carrier-gas pressure, the influence of the laser parameters on the mean particle size is almost opposite for the two laser ablation methods. Besides, the ablation mechanisms were discussed to understand the variation of mean particle sizes with target size.  相似文献   

12.
The process of laser ablation of microparticles has been shown to generate nanoparticles from microparticles; but the generation of nanoparticle networks from microparticles has never been reported before. We report a unique approach for the generation of nanoparticle networks through ablation of microparticles. Using this approach, two samples containing microparticles of lead oxide (Pb3O4) and nickel oxide (NiO), respectively, were ablated under ambient conditions using a femtosecond laser operating in the MHz repetition rate regime. Nanoparticle networks with particle diameter ranging from 60 to 90 nm were obtained by ablation of microparticles without use of any specialized equipment, catalysts or external stimulants. The formation of finer nanoparticle networks has been explained by considering the low pressure region created by the shockwave, causing rapid condensation of microparticles into finer nanoparticles. A comparison between the nanostructures generated by ablating microparticle and those by ablating bulk substrate was carried out; and a considerable reduction in size and narrowed size distribution was observed. Our nanostructure fabrication technique will be a unique process for nanoparticle network generation from a vast array of materials.  相似文献   

13.
On the example of silicon, the production of nanoparticles using spark discharge is shown to be feasible for semiconductors. The discharge circuit is modelled as a damped oscillator circuit. This analysis reveals that the electrode resistance should be kept low enough to limit energy loss by Joule heating and to enable effective nanoparticle production. The use of doped electrodes results in a thousand-fold increase in the mass production rate as compared to intrinsic silicon. Pure and oxidised uniformly sized silicon nanoparticles with a primary particle diameter of 3–5 nm are produced. It is shown that the colour of the particles can be used as a good indicator of the oxidation state. If oxygen and water are banned from the spark generation system by (a) gas purification, (b) outgassing and (c) by initially using the particles produced as getters, unoxidised Si particles are obtained. They exhibit pyrophoric behaviour. This continuous nanoparticle preparation method can be combined with other processing techniques, including surface functionalization or the immediate impaction of freshly prepared nanoparticles onto a substrate for applications in the field of batteries, hydrogen storage or sensors.  相似文献   

14.
We synthesized ZnO nanoparticles by laser ablation of a Zn target in water at pressures up to 30 MPa. We observed the enhancement of the crystallinity of synthesized ZnO nanoparticles when high pressure was applied to ambient water. In addition, we found that ZnO nanoparticles with smaller sizes were synthesized by pressurizing ambient water. Considering our previous understanding on the effect of high pressure applied to ambient liquid, the controls of the structure and the size of nanoparticles were considered to be obtained via the controls of the dynamics of laser ablation plasma and ablation-induced cavitation bubble.  相似文献   

15.
Surface modifications by nanostructuring present a new laser application for improvement of surface properties such as adhesion, mechanical characteristics or corrosion protection. In this study, we report the formation of nanoparticles by laser irradiation of a steel surface. The influence of laser parameters such as pulse duration (25–30 ns, 500 fs), wavelength (248 nm, 308 nm), and the background gas pressure (10 mbar-1 bar) on the formation of this back deposition layer composed of aggregated iron oxide nanoparticles were investigated. Scanning electron microscopy and atomic force microscopy were used to characterise the irradiated steel surface and the particle morphology deposited by backward flux. In the nanosecond laser ablation regime, films are formed by aggregated nanoparticles with well developed cauliflower like structures, the size and the morphology depending on the nature and pressure of the background gas. In the femtosecond regime, we observed the formation of micrometer sized structures at the steel surface. In particular, a non-conventional mechanism of nanocluster condensation and growth is revealed since two different ablation rates corresponding to two different predominant processes are observed. These analyses demonstrate the possibility of controlling the distribution and the size of particles by varying the laser parameters and the background gas pressure and nature. PACS 52.38.Mf; 81.65.-b; 81.15.Gh.  相似文献   

16.
Qing-Xue Li 《中国物理 B》2022,31(8):85201-085201
A combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy is investigated. Depositing Au nanoparticles at the surface of a brass target can enhance the coupling of the target and the laser. More atoms in the brass sample are excited. As a secondary excitation source, spark discharge reheats the generated plasma, which further amplifies the enhancement results of nanoparticles. The spectral intensity with the spark discharge increases more obviously with nanoparticle concentration increasing than without the spark discharge. Also, plasma temperature and electron density are calculated by the Boltzmann plot and Stark broadening. The changes in the plasma temperature and electron density are consistent with the spectral emission changes.  相似文献   

17.
Previous experimental studies showed that powerful heating of nanoparticles by a laser pulse using energy density greater than 100 mJ/cm2, could induce vaporization and generate microbubbles. When ultrasound is introduced at the same time as the laser pulse, much less laser power is required. For therapeutic applications, generation of microbubbles on demand at target locations, e.g. cells or bacteria can be used to induce hyperthermia or to facilitate drug delivery. The objective of this work is to develop a method capable of predicting photothermal and acoustic parameters in terms of laser power and acoustic pressure amplitude that are needed to produce stable microbubbles; and investigate the influence of bubble coalescence on the thresholds when the microbubbles are generated around nanoparticles that appear in clusters.

We develop and solve here a combined problem of momentum, heat and mass transfer which is associated with generation and growth of a microbubble, filled with a mixture of non-vaporized gas (air) and water vapor. The microbubble’s size and gas content vary as a result of three mechanisms: gas expansion or compression, evaporation or condensation on the bubble boundary, and diffusion of dissolved air in the surrounding water. The simulations predict that when ultrasound is applied relatively low threshold values of laser and ultrasound power are required to obtain a stable microbubble from a single nanoparticle. Even lower power is required when microbubbles are formed by coalescence around a cluster of 10 nanoparticles. Laser pulse energy density of 21 mJ/cm2 is predicted for instance together with acoustic pressure of 0.1 MPa for a cluster of 10 or 62 mJ/cm2 for a single nanoparticle. Those values are well within the safety limits, and as such are most appealing for targeted therapeutic purposes.  相似文献   


18.
In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions.  相似文献   

19.
We described the influence of a type of gas and its pressure upon the size distribution of Si nanoparticles fabricated by laser ablation in an ambient gas and the plume dynamics during the synthesis. The plume dynamics was investigated by laser-induced fluorescence and ultraviolet Rayleigh scattering. Based on the results, the importance of the gas flow within the ablation plume in the formation of the nanoparticles is understood.  相似文献   

20.
Pulsed laser ablation (PLA) in liquid medium was successfully employed to synthesize hydroxyapatite (HAp) colloidal nanoparticles. The crystalline phase, particle morphology, size distribution and microstructure of the HAp nanoparticles were investigated in detail. The obtained HAp nanoparticles had spherical shape with sizes ranging from 5 to 20 nm. The laser ablation and the nanoparticle forming process were studied in terms of the explosive ejection mechanism by investigating the change of the surface morphology on target. The stoichiometry and bonding properties were studied by using XPS, FT-IR and Raman spectroscopy. A molar ratio of Ca/P of the prepared HAp nanoparticles was more stoichiometric than the value reported in the case of ablation in vacuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号