首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
пУсть жАДАНы Ужлы $$ - \infty< x_1< x_2< ...< x_k< x_{k + 1}< ...< x_n< + \infty ,$$ , И пУстьx 1 * <x 2 * <...<x n-1 * — кОРНИ МНОгО ЧлЕНА Ω′(х). гДЕ $$\omega (x) = \prod\limits_{k = 1}^n {(x - x_k ).} $$ В РАБОтЕ ИсслЕДУЕтсь жАДАЧА: кАк ОпРЕДЕлИт ь МНОгОЧлЕНР(х) МИНИМАльНОИ стЕп ЕНИ, Дль кОтОРОгО ВыпОлНь Утсь слЕДУУЩИЕ ИНтЕР пОльцИОННыЕ УслОВИь гДЕ {y k И {y k′}-жАДАННы Е сИстЕМы жНАЧЕНИИ.  相似文献   

2.
We study new series of the form $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ in which the general term $f_k^{ - 1} \hat P_k^{ - 1} (x)$ , k = 0, 1, …, is obtained by passing to the limit as α→?1 from the general term $\hat f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)$ of the Fourier series $\sum\nolimits_{k = 0}^\infty {f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)} $ in Jacobi ultraspherical polynomials $\hat P_k^{\alpha ,\alpha } (x)$ generating, for α> ?1, an orthonormal system with weight (1 ? x 2)α on [?1, 1]. We study the properties of the partial sums $S_n^{ - 1} (f,x) = \sum\nolimits_{k = 0}^n {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ of the limit ultraspherical series $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ . In particular, it is shown that the operator S n ?1 (f) = S n ?1 (f, x) is the projection onto the subspace of algebraic polynomials p n = p n (x) of degree at most n, i.e., S n (p n ) = p n ; in addition, S n ?1 (f, x) coincides with f(x) at the endpoints ±1, i.e., S n ?1 (f,±1) = f(±1). It is proved that the Lebesgue function Λ n (x) of the partial sums S n ?1 (f, x) is of the order of growth equal to O(ln n), and, more precisely, it is proved that $\Lambda _n (x) \leqslant c(1 + \ln (1 + n\sqrt {1 - x^2 } )), - 1 \leqslant x \leqslant 1$ .  相似文献   

3.
Letx 1, …,x n be givenn distinct positive nodal points which generate the polynomial $$\omega _n (x) = \prod\limits_{i = 1}^n {(x - x_i )} .$$ Letx*1, …,x* n?1 be the roots of the derivativeω n (x) and putx 0=0. In this paper, the following theorem is proved: Ify 0, …,y n andy1, …,y n?1 are arbitrary real numbers, then there exists a unique polynomialP 2n?1(x) of degree 2n?1 having the following interpolation properties: $$P_{2n - 1} (x_j ) = y_j (j = 0,...,n),$$ , $$P_{2n - 1}^\prime (x_j^* ) = y_j^\prime (j = 1,...,n - 1).$$ . This result gives the theoretical completion of the original Pál type interpolation process, since it ensures uniqueness without assuming any additional condition.  相似文献   

4.
Several sharp upper and lower bounds for the ratio of two normal probabilities $\mathbb{P}\Biggl(\,\bigcap_{i=1}^{n}\bigl\{\xi^{(1)}_i\leq \mu_i\bigr\}\Biggr)\Big/\mathbb{P}\Biggl(\,\bigcap_{i=1}^{n}\bigl\{\xi^{(0)}_i\leq \mu_i\bigr\}\Biggr)$ are given in this paper for various cases, where (ξ 1 (0) 2 (0) ,…,ξ n (0) ) and (ξ 1 (1) 2 (1) , …,ξ n (1) ) are standard normal random variables with covariance matrices R 0=(r ij 0 ) and R 1=(r ij 1 ), respectively.  相似文献   

5.
Let \(\chi _0^n = \left\{ {X_t } \right\}_0^n \) be a martingale such that 0≦Xi≦1;i=0, …,n. For 0≦p≦1 denote by ? p n the set of all such martingales satisfying alsoE(X0)=p. Thevariation of a martingale χ 0 n is denoted byV 0 n and defined by \(V(\chi _0^n ) = E\left( {\sum {_{l = 0}^{n - 1} } \left| {X_{l + 1} - X_l } \right|} \right)\) . It is proved that $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\mathop {Sup}\limits_{x_0^n \in \mathcal{M}_p^n } \left[ {\frac{1}{{\sqrt n }}V(\chi _0^n )} \right]} \right\} = \phi (p)$$ , where ?(p) is the well known normal density evaluated at itsp-quantile, i.e. $$\phi (p) = \frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi _p^2 ) where \int_{ - \alpha }^{x_p } {\frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi ^2 )} dx = p$$ . A sequence of martingales χ 0 n ,n=1,2, … is constructed so as to satisfy \(\lim _{n \to \infty } (1/\sqrt n )V(\chi _0^n ) = \phi (p)\) .  相似文献   

6.
Let σ n 2 (f, x) be the Cesàro means of second order of the Fourier expansion of the function f. Upper bounds of the deviationf(x)-σ n 2 (f, x) are studied in the metricC, while f runs over the class \(\bar W^1 C\) , i. e., of the deviation $$F_n^2 (\bar W^1 ,C) = \mathop {\sup }\limits_{f \in \bar W^1 C} \left\| {f(x) - \sigma _n^2 (f,x)} \right\|_c$$ . It is proved that the function $$g^* (x) = \frac{4}{\pi }\mathop \sum \limits_{v = 0}^\infty ( - 1)^v \frac{{\cos (2v + 1)x}}{{(2v + 1)^2 }}$$ , for whichg *′(x)=sign cosx, satisfies the following asymptotic relation: $$F_n^2 (\bar W^1 ,C) = g^* (0) - \sigma _n^2 (g^* ,0) + O\left( {\frac{1}{{n^4 }}} \right)$$ , i.e.g * is close to the extremal function. This makes it possible to find some of the first terms in the asymptotic formula for \(F_n^2 (\bar W^1 ,C)\) asn → ∞. The corresponding problem for approximation in the metricL is also considered.  相似文献   

7.
Let $$P_n (x) = \frac{{( - 1)^n }}{{2^n n!}}\frac{{d^n }}{{dx^n }}\left[ {(1 - x^2 )^n } \right]$$ be thenth Legendre polynomial. Letx 1,x 2,…,x n andx*1,x*2,…,x* n?1 denote the roots ofP n (x) andP′ n (x), respectively. Putx 0=x*0=?1 andx* n =1. In this paper we prove the following theorem: Ify 0,y 1,…,y n andy′ 0,y′ 1, …,y′ n are two systems of arbitrary real numbers, then there exists a unique polynomialQ 2n+1(x) of degree at most 2n+1 satisfying the conditions $$Q_{2n + 1} (x_k^* ) = y_k and Q_{2n + 1}^\prime (x_k ) = y_k^\prime (k = 0,...,n).$$ .  相似文献   

8.
At first Cauchy-problem for the equation: \(L[u(X,t)] \equiv \sum\limits_{i = 1}^n {\frac{{\partial ^2 u}}{{\partial x_1^2 }} + \frac{{2v}}{{\left| X \right|^2 }}} \sum\limits_{i = 1}^n {x_i \frac{{\partial u}}{{\partial x_i }} - \frac{{\partial u}}{{\partial t}} = 0} \) wheren≥1,v—an arbitrary constant,t>0,X=(x 1, …, xn)∈E n/{0}, |X|= =(x 1 2 +…+x n 2 )1/2, with 0 being a centre of coordinate system, is studied. Basing on the above, the solution of Cauchy-Nicolescu problem is given which consist in finding a solution of the equationL p [u (X, t)]=0, withp∈N subject the initial conditions \(\mathop {\lim }\limits_{t \to \infty } L^k [u(X,t)] = \varphi _k (X)\) ,k=0, 1,…,p?1 and ?k(X) are given functions.  相似文献   

9.
This paper deals with the very interesting problem about the influence of piecewise smooth boundary conditions on the distribution of the eigenvalues of the negative Laplacian inR 3. The asymptotic expansion of the trace of the wave operator $\widehat\mu (t) = \sum\limits_{\upsilon = 1}^\infty {\exp \left( { - it\mu _\upsilon ^{1/2} } \right)} $ for small ?t? and $i = \sqrt { - 1} $ , where $\{ \mu _\nu \} _{\nu = 1}^\infty $ are the eigenvalues of the negative Laplacian $ - \nabla ^2 = - \sum\limits_{k = 1}^3 {\left( {\frac{\partial }{{\partial x^k }}} \right)} ^2 $ in the (x 1,x 2,x 3), is studied for an annular vibrating membrane Ω inR 3 together with its smooth inner boundary surfaceS 1 and its smooth outer boundary surfaceS 2. In the present paper, a finite number of Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth componentsS * i(i=1, …,m) ofS 1 and on the piecewise smooth componentsS * i(i=m+1, …,n) ofS 2 such that $S_1 = \bigcup\limits_{i = 1}^m {S_i^* } $ and $S_2 = \bigcup\limits_{i = m + 1}^n {S_i^* } $ are considered. The basic problem is to extract information on the geometry of the annular vibrating membrane ω from complete knowledge of its eigenvalues by analyzing the asymptotic expansions of the spectral function $\widehat\mu (t)$ for small ?t?.  相似文献   

10.
11.
Рассматривается сис тема ортогональных м ногочленов {P n (z)} 0 , удовлетворяющ их условиям $$\frac{1}{{2\pi }}\int\limits_0^{2\pi } {P_m (z)\overline {P_n (z)} d\sigma (\theta ) = \left\{ {\begin{array}{*{20}c} {0,m \ne n,P_n (z) = z^n + ...,z = \exp (i\theta ),} \\ {h_n > 0,m = n(n = 0,1,...),} \\ \end{array} } \right.} $$ где σ (θ) — ограниченная неу бывающая на отрезке [0,2π] функция с бесчисленным множе ством точек роста. Вводится последовательность параметров {аn 0 , независимых дру г от друга и подчиненных единств енному ограничению { ¦аn¦<1} 0 ; все многочлены {Р n (z)} 0/∞ можно найти по формуле $$P_0 = 1,P_{k + 1(z)} = zP_k (z) - a_k P_k^ * (z),P_k^ * (z) = z^k \bar P_k \left( {\frac{1}{z}} \right)(k = 0,1,...)$$ . Многие свойства и оце нки для {P n (z)} 0 и (θ) можн о найти в зависимости от этих параметров; например, условие \(\mathop \Sigma \limits_{n = 0}^\infty \left| {a_n } \right|^2< \infty \) , бо лее общее, чем условие Г. Cerë, необходимо и достато чно для справедливости а симптотической форм улы в области ¦z¦>1. Пользуясь этим ме тодом, можно найти также реш ение задачи В. А. Стекло ва.  相似文献   

12.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

13.
We mainly study the existence of positive solutions for the following third order singular super-linear multi-point boundary value problem $$ \left \{ \begin{array}{l} x^{(3)}(t)+ f(t, x(t), x'(t))=0,\quad0 where \(0\leq\alpha_{i}\leq\sum_{i=1}^{m_{1}}\alpha_{i}<1\) , i=1,2,…,m 1, \(0<\xi_{1}< \xi_{2}< \cdots<\xi_{m_{1}}<1\) , \(0\leq\beta_{j}\leq\sum_{i=1}^{m_{2}}\beta_{i}<1\) , j=1,2,…,m 2, \(0<\eta_{1}< \eta_{2}< \cdots<\eta_{m_{2}}<1\) . And we obtain some necessary and sufficient conditions for the existence of C 1[0,1] and C 2[0,1] positive solutions by means of the fixed point theorems on a special cone. Our nonlinearity f(t,x,y) may be singular at t=0 and t=1.  相似文献   

14.
Following the terminology introduced by V. V. Trofimov and A. T. Fomenko, we say that a self-adjoint operator $\varphi :\mathfrak{g}* \to \mathfrak{g}$ is sectional if it satisfies the identity ad ?x * a = ad β * x, $x \in \mathfrak{g}*$ , where $\mathfrak{g}$ is a finite-dimensional Lie algebra and $a \in \mathfrak{g}*$ and $\beta \in \mathfrak{g}$ are fixed elements. In the case of a semisimple Lie algebra $\mathfrak{g}$ , the above identity takes the form [?x, a] = [β, x] and naturally arises in the theory of integrable systems and differential geometry (namely, in the dynamics of n-dimensional rigid bodies, the argument shift method, and the classification of projectively equivalent Riemannian metrics). This paper studies general properties of sectional operators, in particular, integrability and the bi-Hamiltonian property for the corresponding Euler equation $\dot x = ad_{\varphi x}^* x$ .  相似文献   

15.
LetW(x) be a function that is nonnegative inR, positive on a set of positive measure, and such that all power moments ofW 2 (x) are finite. Let {p n (W 2;x)} 0 denote the sequence of orthonormal polynomials with respect to the weightW 2, and let {α n } 1 and {β n } 1 denote the coefficients in the recurrence relation $$xp_n (W^2 ,x) = \alpha _{n + 1} p_{n + 1} (W^2 ,x) + \beta _n p_n (W^2 ,x) + \alpha _n p_{n - 1} (W^2 ,x).$$ We obtain a sufficient condition, involving mean approximation ofW ?1 by reciprocals of polynomials, for $$\mathop {\lim }\limits_{n \to \infty } {{\alpha _n } \mathord{\left/ {\vphantom {{\alpha _n } {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }} = \tfrac{1}{2}and\mathop {\lim }\limits_{n \to \infty } {{\beta _n } \mathord{\left/ {\vphantom {{\beta _n } {c_{n + 1} }}} \right. \kern-\nulldelimiterspace} {c_{n + 1} }} = 0,$$ wherec n 1 is a certain increasing sequence of positive numbers. In particular, we obtain a sufficient condition for Freud's conjecture associated with weights onR.  相似文献   

16.
Let (X, Λ) be a pair of random variables, where Λ is an Ω (a compact subset of the real line) valued random variable with the density functiong(Θ: α) andX is a real-valued random variable whose conditional probability function given Λ=Θ is P {X=x|Θ} withx=x 0, x1, …. Based onn independent observations ofX, x (n), we are to estimate the true (unknown) parameter vectorα=(α 1, α2, ...,αm) of the probability function ofX, Pα(X=∫ΩP{X=x|Θ}g(Θ:α)dΘ. A least squares estimator of α is any vector \(\hat \alpha \left( {X^{\left( n \right)} } \right)\) which minimizes $$n^{ - 1} \sum\limits_{i = 1}^n {\left( {P_\alpha \left( {x_i } \right) - fn\left( {x_i } \right)} \right)^2 } $$ wherex (n)=(x1, x2,…,x n) is a random sample ofX andf n(xi)=[number ofx i inx (n)]/n. It is shown that the least squares estimators exist as a unique solution of the normal equations for all sufficiently large sample size (n) and the Gauss-Newton iteration method of obtaining the estimator is numerically stable. The least squares estimators converge to the true values at the rate of \(O\left( {\sqrt {2\log \left( {{{\log n} \mathord{\left/ {\vphantom {{\log n} n}} \right. \kern-0em} n}} \right)} } \right)\) with probability one, and has the asymptotically normal distribution.  相似文献   

17.
Denote by span {f 1,f 2, …} the collection of all finite linear combinations of the functionsf 1,f 2, … over ?. The principal result of the paper is the following. Theorem (Full Müntz Theorem in Lp(A) for p ∈ (0, ∞) and for compact sets A ? [0, 1] with positive lower density at 0). Let A ? [0, 1] be a compact set with positive lower density at 0. Let p ∈ (0, ∞). Suppose (λ j ) j=1 is a sequence of distinct real numbers greater than ?(1/p). Then span {x λ1,x λ2,…} is dense in Lp(A) if and only if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ . Moreover, if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ , then every function from the Lp(A) closure of {x λ1,x λ2,…} can be represented as an analytic function on {z ∈ ? \ (?∞,0] : |z| < rA} restricted to A ∩ (0, rA) where $r_A : = \sup \left\{ {y \in \mathbb{R}:\backslash ( - \infty ,0]:\left| z \right|< r_A } \right\}$ (m(·) denotes the one-dimensional Lebesgue measure). This improves and extends earlier results of Müntz, Szász, Clarkson, Erdös, P. Borwein, Erdélyi, and Operstein. Related issues about the denseness of {x λ1,x λ2,…} are also considered.  相似文献   

18.
For the hypersurface Γ=(y,γ(y)), the singular integral operator along Γ is defined by. $$Tf(x,x_n ) = P.V.\int_{\mathbb{R}^n } {, f(x - y,x_n ) - } \gamma (y))_{\left| y \right|^{n - 1} }^{\Omega (v)} dy$$ where Σ is homogeneous of order 0, $ \int_{\Sigma _{n \lambda } } {\Omega (y')dy'} = 0 $ . For a certain class of hypersurfaces, T is shown to be bounded on Lp(Rn) provided Ω∈L α 1 n?2),P>1.  相似文献   

19.
Let Ω be an arbitrary open set in R n , and let σ(x) and g i (x), i = 1, 2, ..., n, be positive functions in Ω. We prove a embedding theorem of different metrics for the spaces W p r (Ω, σ, $ \vec g $ ), where rN, p ≥ 1, and $ \vec g $ (x) = (g 1(x), g 2(x), ..., g n (x)), with the norm $$ \left\| {u;W_p^r (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\left\| {u;L_{p,r}^r (\Omega ;\sigma ,\vec g)} \right\|^p + \left\| {u;L_{p,r}^0 (\Omega ;\sigma ,\vec g)} \right\|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where $$ \left\| {u;L_{p,r}^m (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\sum\limits_{\left| k \right| = m} {\int\limits_\Omega {(\sigma (x)g_1^{k_1 - r} (x)g_2^{k_2 - r} (x) \cdots g_n^{k_n - r} (x)\left| {u^{(k)} (x)} \right|)^p dx} } } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ We use this theorem to prove the existence and uniqueness of a minimizing element U(x) ∈ W p r (Ω, σ, $ \vec g $ ) for the functional $$ \Phi (u) = \sum\limits_{\left| k \right| \leqslant r} {\frac{1} {{p_k }}\int\limits_\Omega {a_k (x)} \left| {u^{(k)} (x)} \right|^{p_k } } dx - \left\langle {F,u} \right\rangle , $$ where F is a given functional. We show that the function U(x) is a generalized solution of the corresponding nonlinear differential equation. For the case in which Ω is bounded, we study the differential properties of the generalized solution depending on the smoothness of the coefficients and the right-hand side of the equation.  相似文献   

20.
Let (X 1,Y 1),...(X n ,Y n ) be a random sample from the (k+1)-dimensional multivariate density functionf *(x,y). Estimates of thek-dimensional density functionf(x)=∫f *(x,y)dy of the form $$\hat f_n (x) = \frac{1}{{nb_1 (n) \cdots b_k (n)}}\sum\limits_{i = 1}^n W \left( {\frac{{x_1 - X_{i1} }}{{b_1 (n)}}, \cdots ,\frac{{x_k - X_{ik} }}{{b_k (n)}}} \right)$$ are considered whereW(x) is a bounded, nonnegative weight function andb 1 (n),...,b k (n) and bandwidth sequences depending on the sample size and tending to 0 asn→∞. For the regression function $$m(x) = E(Y|X = x) = \frac{{h(x)}}{{f(x)}}$$ whereh(x)=∫y(f) * (x, y)dy , estimates of the form $$\hat h_n (x) = \frac{1}{{nb_1 (n) \cdots b_k (n)}}\sum\limits_{i = 1}^n {Y_i W} \left( {\frac{{x_1 - X_{i1} }}{{b_1 (n)}}, \cdots ,\frac{{x_k - X_{ik} }}{{b_k (n)}}} \right)$$ are considered. In particular, unform consistency of the estimates is obtained by showing that \(||\hat f_n (x) - f(x)||_\infty \) and \(||\hat m_n (x) - m(x)||_\infty \) converge completely to zero for a large class of “good” weight functions and under mild conditions on the bandwidth sequencesb k (n)'s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号