首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Dynamic light scattering was used to study the adsorption of two proteins with different surface properties (IgG and HSA) on negatively charged polystyrene latex. The proteins were adsorbed from water and from water/methanol and water/glycerol mixtures at various pH. Some striking differences between the adsorption behaviors of the proteins were observed. Whereas the thickness of the adsorbed layer of HSA was extremely sensitive to pH and solvent composition, that of IgG was not. IgG mainly showed an end-on orientation on polystyrene whereas several different surface orientations are suggested for HSA under different conditions. The addition of methanol inhibited the adsorption of HSA on the latex, but it did not affect the adsorption of IgG. In contrast, the addition of glycerol increased the thickness of the adsorbed layers of both proteins. So, the orientation of IgG on the latex is insensitive to pH but is a function of the kind of solvent whereas both pH and solvent strongly affect the adsorption of HSA. This is a puzzling result since both cosolvents should equally affect the adsorption of both proteins if the dominant forces for adsorption are the same. Therefore, we concluded that, whereas hydrophobic interactions are the dominant force in the adsorption behavior of HSA, van der Waals forces are the main forces involved in the attachment of IgG to the lattices. Copyright 2000 Academic Press.  相似文献   

2.
武照强 《高分子科学》2012,30(2):235-241
The present work aimed to study the interaction between plasma proteins and PVP-modified surfaces under more complex protein conditions.In the competitive adsorption of fibrinogen(Fg) and human serum albumin(HSA),the modified surfaces showed preferential adsorption of HSA.In 100%plasma,the amount of Fg adsorbed onto PVP-modified surfaces was as low as 10 ng/cm~2,suggesting the excellent protein resistance properties of the modified surfaces.In addition, immunoblots of proteins eluted from the modified surfaces after plasma contact confirmed that PVP-modified surfaces can repel most plasma proteins,especially proteins that play important roles in the process of blood coagulation.  相似文献   

3.
In this paper two in situ techniques are combined to simultaneously examine protein adsorption at the solid–liquid interface from sessile solution droplets. With axisymmetric drop shape analysis by profile (ADSA-P) the change in solid–liquid interfacial tension is determined, while ellipsometry is employed to measure the amount of protein adsorbed from the same solution droplet at the solid–liquid interface. Three proteins (human serum albumin (HSA), immunoglobulin G (IgG) and fibrinogen (Fb)) were dissolved to a concentration of 0.05 mg ml−1 in PBS (pH 7) and sessile droplets were placed for 2 h on a 47.8 nm thick gold coating on glass. The gold coated glass was positioned onto a quartz prism with immersion oil. The prism was aligned in a rotating analyser ellipsometer and the optical beam was thus allowed to be reflected at the hydrophobic gold surface. The ADSA-P set-up was built in 90° cross-beamed set-up around the prism. By combining the results for the adsorbed amounts and the interfacial tension changes over the two hour adsorption period, two stages in the adsorption process could be distinguished. In the first stage, the adsorbed amounts increase in correspondence with the interfacial tension changes, indicating that the interfacial tension changes are caused by adsorption, whereas in the second stage interfacial tension changes continue despite the adsorbed amounts being constant. Consequently, the second stage must be associated with conformational changes of the adsorbed proteins. For HSA and Fb, the conformational contribution to the interfacial tension changes (7.8 and 5.3 mJ m−2, respectively) were approximately 2-fold the adsorption contribution, while for IgG both were equal around 3 mJ m−2.  相似文献   

4.
Proteinaceous conditioning films (pCFs) are thought to play a key role in microbial adhesion, leading to the fouling of technical and biomedical devices and biofilm formation, which in turn causes material damage or persistent infections, respectively. However, little is definitively known about the process of surface conditioning via proteins. Herein, we demonstrate the potential of quartz crystal microbalance with dissipation coupled to MALDI-ToF mass spectrometry (QCM-D-MALDI) to investigate protein adsorption on different surfaces, enabling both the monitoring of CF formation and the determination of the molecular composition of CFs. After running QCM-D experiments, a subsequent tryptic on chip digestion step allows the identification of the proteins deposited on the sensor chip surface via MALDI-ToF mass spectrometry. Prominent blood plasma proteins, i.e., human serum albumin (HSA), fibrinogen (FG) and fibronectin (FN), were used. Chemically well defined sensor surfaces were prepared, among others, via self-assembled monolayer (SAM) technology. In cases where protein adsorption was observed by QCM-D, the adsorbed proteins were clearly detected and identified using MALDI-ToF/MS for both single-protein solutions of HSA, FG and FN as well as for protein mixtures. However, for equimolar protein mixtures on TiO2 surfaces, only signals attributed to FG and FN were observed in the mass spectra. No signals indicating the presence of HSA could be detected. This finding leads to the assumption that only FG and FN attach to the TiO2 sensor surface under the given experimental conditions.  相似文献   

5.
Neutron reflectivity (NR) was used to study the adsorption of human serum albumin and human fibrinogen on quartz. The proteins were individually and sequentially adsorbed from heavy water and heavy water/methanol mixtures at pH 4 and 7.0. The technique allows for the subnanometer resolution of the adsorbed layer thickness and gross morphology. Under the conditions of our measurements we found that fibrinogen formed a distinct layer that we interpret as a mat of the protein three layers thick whereas albumin formed only diffuse layers. The adsorption pattern of the two proteins changed radically when one protein was adsorbed on top of the other (previously adsorbed). In general our measurements indicate that the adsorbed protein layers on quartz are rather loosely bound and that these layers, incorporating as much as 80% water, extend further into the bulk fluid than might have been expected.  相似文献   

6.
The adsorption of human fibrinogen on tantalum oxide, titanium oxide and gold surfaces has been studied by quartz crystal microbalance with dissipation (QCM-D) at 37 degrees C. Two different protein concentrations have been used, one close to physiological concentration (1 mg/ml) and one significantly lower (0.033 mg/ml). To further characterize the adsorbed fibrinogen layer, the subsequent binding of both polyclonal and monoclonal antibodies of fibrinogen is studied. We found that the viscoelastic properties of the fibrinogen layer depends strongly on the initial protein concentration. The trend is generally seen for all three surfaces. The fibrinogen layer on gold and tantalum oxide is found to have the same viscoelastic properties, which are different from those found for the fibrinogen layer adsorbed on titanium oxide. The dependency of the surface chemistry on the viscoelastic properties of the fibrinogen layer is observed directly for the 0.033 mg/ml solution, and indirectly through the antibody response for the 1 mg/ml solution. From this we conclude that the orientation and/or denaturation of fibrinogen on a surface depends on the surface chemistry and the protein concentration in the solution, and that the binding of antibodies is a useful way to detect this difference.  相似文献   

7.
The adsorption of two model proteins, human serum albumin and immunoglobulin G, on a gold electrode surface was investigated using 125I radiolabeling and cyclic voltammetry (CV). 125I radiolabeling was used to determine the extent of protein adsorption, while CV was used to ascertain the effect of the adsorbed protein layer on the electron transfer between the gold electrode and an electroactive moiety in solution, namely, K3Fe(CN)6. The adsorbed amounts of HSA and IgG agreed well with previous results and showed approximately monolayer coverage. The amount of adsorbed protein increased when a positive potential (700 mV) was applied to the electrode, while the application of a negative potential (-800 mV) resulted in a decrease. When the solution pH was varied to alter the charge on the protein, the adsorption trends appeared to follow electrostatic interaction, namely, greater adsorption when the electrode and the protein possessed opposite charge and vice versa. The adsorbed protein layer had the effect of blocking the electron transfer. It was possible to correlate the degree of electron blocking with the amount of adsorbed protein to show that the greater the adsorption, the larger the blocking effect. Of the two proteins used, HSA proved to be more efficient at blocking the electron transfer.  相似文献   

8.
The as-synthesised carbon nanotube nanoweb modified carbon fibre paper (CNT-NW/CFP) was investigated to study the effect of surface protein adsorption in electrochemical activities using immunoglobulin G (IgG) and human serum albumin (HSA). Detail chemical characterisation was carried out using 125I radiolabeling, cyclic voltammetry and electrochemical impedance spectroscopy. Both HSA and IgG were adsorbed onto the electrode at levels of approximately 120 mg/m2. Cyclic voltammetry indicated that the surface-adsorbed protein had a detrimental effect on oxidation/reduction of ferri/ferricyanide whilst EIS spectra revealed a slight increase in impedance and decrease in capacitance.  相似文献   

9.
In the present work, the adsorption of human serum albumin (HSA) on commercially pure titanium with a titanium oxide layer formed in a H(2)O(2) solution (TiO(2) cp) and on TiO(2) sputtered on Si (TiO(2) sp) was analyzed. Adsorption isotherms, kinetic studies, and work of adhesion determinations were carried out. HSA exchangeability was also evaluated. Surface characterization was performed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and wettability studies. The two TiO(2) surfaces have very distinct roughnesses, the TiO(2) sp having a mean R(a) value 14 times smaller than the one of TiO(2) cp. XPS analysis revealed consistent peaks representative of TiO(2) on sputtered samples as well as on Ti cp substrate after 48 h of H(2)O(2) immersion. Nitrogen was observed as soon as protein was present, while sulfur, present in disulfide bonds in HSA, was observed for concentrations of protein higher than 0.30 mg/mL. The work of adhesion was determined from contact angle measurements. As expected from the surface free energy values, the work of adhesion of HSA solution is higher for the TiO(2) cp substrate, the more hydrophilic one, and lower for the TiO(2) sp substrate, the more hydrophobic one. The work of adhesion between plasma and the substrates assumed even higher values for the TiO(2) cp surface, indicating a greater interaction between the surface and the complex protein solutions. Adsorption studies by radiolabeling of albumin ((125)I-HSA) suggest that rapid HSA adsorption takes place on both surfaces, reaching a maximum value after approximately 60 min of incubation. For the higher HSA concentrations in solution, a multilayer coverage was observed on both substrates. After the adsorption step from single HSA solutions, the exchangeability of adsorbed HSA molecules by HSA in solution was evaluated. The HSA molecules adsorbed on TiO(2) sp seem to be more easily exchanged by HSA itself than those adsorbed on TiO(2) cp after 24 h. In contrast, after 72 h, nearly all the adsorbed albumin molecules effectively exchange with other albumin molecules.  相似文献   

10.
Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in proteins adsorbed on such films are a function of the pH of the solution. In addition, the number and the accessibility of free charges in proteins depend on the secondary structure of the protein. The subtle interplay of all these factors determines the adsorption of the proteins onto the polyelectrolyte film surfaces. We investigated the effect of these parameters for polyelectrolyte films built up from weak "protein-like" polyelectrolytes (i.e., polypeptides), poly(L-lysine) (PLL), and poly(glutamic acid) (PGA) and for the adsorption of human serum albumin (HSA) onto these films in the pH range 3.0-10.5. It was found that the buildup of the polyelectrolyte films is not a simple function of the pure charges of the individual polyelectrolytes, as estimated from their respective pKa values. The adsorption of HSA onto (PLL/PGA)n films depended strongly on the polyelectrolyte terminating the film. For PLL-terminated polyelectrolyte films, at low pH, repulsion, as expected, is limiting the adsorption of HSA (having net positive charge below pH 4.6) since PLL is also positively charged here. At high pH values, an unexpected HSA uptake was found on the PGA-ending films, even when both PGA and HSA were negatively charged. It is suggested that the higher surface rugosity and the decrease of the alpha-helix content at basic pH values (making accessible certain charged groups of the protein for interactions with the polyelectrolyte film) could explain this behavior.  相似文献   

11.
Hydrophilizing synthetic polymer dialysis membranes with polyvinylpyrrolidone (PVP) play an important role for inhibition of protein adsorption on membrane surface. In the present study, the effect of PVP on protein adsorption was evaluated from a nano-scale perspective. Swelling behavior of PVP present on wet polysulfone (PS)/PVP film surfaces was observed by atomic force microscopy (AFM). Fibrinogen and human serum albumin (HSA) were immobilized on the tip of AFM probes, with which a force-curve between protein and wet PS/PVP film surface was measured by AFM while scanning in order to visualize two-dimensional protein adsorbability on film surfaces. Furthermore, HSA adsorbability on non-PVP containing PEPA dialysis membrane (FLX-15GW) and PVP containing PEPA dialysis membrane (FDX-150GW) was evaluated by the AFM force-curve method. As a result, PS/PVP film surface was completely covered with hydrated and swollen PVP at 5 wt% or more PVP content. Protein adsorbability on PS/PVP film surfaces decreased greatly with increasing content of PVP. The adsorption of HSA was inhibited by the presence of PVP on film surfaces more significantly than that of more hydrophobic fibrinogen. HSA adsorbability on wet FLX-15GW dialysis membrane surface was 428 ± 174 pN whereas that on wet FDX-150GW dialysis membrane surface was 42 ± 29 pN.  相似文献   

12.
The adsorption of HSA onto CHI/ALG multilayer assemblies was assessed in situ using QCM-D. It was found that the behavior of HSA on biomaterials surface can be tuned by adjusting parameters of the polyelectrolyte system such as pH, layer number, crosslinker and polymer terminal layer. Our results confirmed the key role of electrostatic interactions during HSA adsorption, since oppositely charged surfaces were more effective in promoting protein adhesion. QCM-D data revealed that crosslinking (CHI/ALG)(5) CHI films allows HSA to become adsorbed in physiological conditions. Our results suggested that the biological potential of biopolymers and the mild conditions of the LbL technique turn these natural nanoassemblies into a suitable choice to be used as pH-sensitive coatings.  相似文献   

13.
The dynamic adsorption of human serum albumin (HSA) and plasma fibronectin (Fn) onto hydrophobic poly(hydroxymethylsiloxane) (PHMS) and the structures of adsorbed protein layers from single and binary protein solutions were studied. Spectroscopic ellipsometry (SE) and quartz crystal microbalance with dissipation monitoring (QCM-D) together with atomic force microscopy (AFM) were used to measure the effective mass, thickness, viscoelastic properties, and morphology of the adsorbed protein films. Adsorbed HSA formed a rigid, tightly bound monolayer of deformed protein, and Fn adsorption yielded a thick, very viscoelastic layer that was firmly bound to the substrate. The mixed protein layers obtained from the coadsorption of binary equimolecular HSA-Fn solutions were found to be almost exclusively dominated by Fn molecules. Further sequential adsorption experiments showed little evidence of HSA adsorbed onto the predeposited Fn layer (denoted as Fn ? HSA), and Fn was not adsorbed onto predeposited HSA (HSA ? Fn). The conformational arrangement of the adsorbed Fn was analyzed in terms of the relative availability of two Fn domains. In particular, (4)F(1)·(5)F(1) binding domains in the Hep I fragment, close to the amino terminal of Fn, were targeted using a polyclonal antifibronectin antibody (anti-Fn), and the RGD sequence in the 10th segment, in the central region of the molecule, was tested by cell culture experiments. The results suggested that coadsorption with HSA induced the Fn switch from an open conformation, with the amino terminal subunit oriented toward the solution, to a close conformation, with the Fn central region oriented toward the solution.  相似文献   

14.
Summary Sedimentation field-flow fractionation was shown to permit the precise evaluation of surface concentrations of human IgG, adsorbed to polystyrene latex spheres of different sizes. Unlike conventional techniques for measuring protein uptake by colloidal substrates, this method allowed a direct evaluation of mass adsorbed per unit area, without the need for potentially destructive labelling reactions. Thus, a four hour adsorption of IgG from a 3–10 fold excess of protein in solution yielded surface concentrations which were 1.4±0.1 mg/m2 on a 272 nm latex and 1.9±0.1 mg/m2 on a latex with a diameter of 142 nm. The lower value coincided with the estimated monolayer surface coverage. The IgG-PS 272 nm adsorption complex was shown to take up negligible amounts of HSA from a 10 mg/mL solution, while its specific uptake of a polyclonal rabbit anti-human IgG was 2.6 molecules per molecule of adsorbed antigen. The same ratio was found for the smaller particles. The surface concentration of adsorbed second antibody, often crucial in immunodiagnostic quantifications, was therefore found to be significantly enhanced by the increased substrate curvature presented by the smaller particles.Dedicated to Professor Leslie S. Ettre on the occasion of his 70th birthday.  相似文献   

15.
The reversible switching of uptake and release of the proteins lysozyme (LYZ, IEP = 11.1) and human serum albumin (HSA, IEP = 4.8) at the surface attached polyelectrolyte multilayer (PEM) consisting of poly(ethylene-imine) (PEI) and poly(acrylic acid) (PAC) is shown. Protein adsorption could be switched by pH setting due to electrostatic interaction. Adsorption of positively charged LYZ at PEM-6 took place at pH = 7.3, where the outermost PAC layer was negatively charged. Complete desorption was obtained at pH = 4, where the outermost PAC layer was neutral. Additionally the charge state of the last adsorbed PAC layer in dependence of the pH of the medium could be determined in the ATR-FTIR difference spectra by the ν(COO) and ν(C=O) band due to carboxylate and carboxylic acid groups. Adsorption of negatively charged HSA at PEM-7 was achieved at pH = 7.3, where the outermost PEI layer was positively charged. Part desorption was obtained at pH = 10, where the outermost PEI layer was neutral. PEM of PEI/PAC may be used for the development of bioactive and bionert materials and protein sensors.  相似文献   

16.
为探讨聚合物-水界面十八烷基聚氧乙烯链(SPEO)空间结构和白蛋白选择性吸附行为的内在联系,本文采用聚甲基丙烯酸甲酯接枝十八烷基聚氧乙烯(PMMA-g-SPEO),通过不同热处理方式获得了具有“环形链”(A)和“尾形链”(B)结构的两种模型表面.在A表面,水相接触角随水化时间的延长而迅速降低,最终亲水性的界面可同时有效阻抗白蛋白和纤维蛋白原的吸附,但不呈现对白蛋白的选择性吸附;而在B表面,水相接触角随水化时间的延长变化不大,最终疏水性的界面可在有效阻抗纤维蛋白原的吸附同时,有效诱导白蛋白的选择性吸附,具有聚氧乙烯(PEO)阻抗非特异性吸附和十八烷基选择性吸附协同作用的特点.  相似文献   

17.
The adsorption of bovine serum albumin (BSA) on platinum surfaces with a root-mean-square roughness ranging from 1.49nm to 4.62nm was investigated using quartz crystal microbalance with dissipation (QCM-D). Two different BSA concentrations, 50microg/ml and 1mg/ml, were used, and the adsorption studies were complemented by monitoring the antibody interaction with the adsorbed BSA layer. The adsorption process was significantly influenced by the surface nano-roughness, and it was observed that the surface mass density of the adsorbed BSA layer is enhanced in a non-trivial way with the surface roughness. From a close examination of the energy dissipation vs. frequency shift plot obtained by the QCM-D technique, it was additionally observed that the BSA adsorption on the roughest surface is subject to several distinct adsorption phases revealing the presence of structural changes facilitated by the nano-rough surface morphology during the adsorption process. These changes were in particular noticeable for the adsorption at the low (50microg/ml) BSA concentration. The results confirm that the nano-rough surface morphology has a significant influence on both the BSA mass uptake and the functionality of the resulting protein layer.  相似文献   

18.
The adsorption of fibronectin on a series of different surfaces was investigated with in situ ellipsometry. For silica and methylated silica, the adsorbed amount (Γ), the adsorbed layer thickness (δel) and the mean adsorbed layer refractive index (nf) were obtained by a procedure involving studies of the bare substrate at two different ambient refractive indices, as well as four-zone averaging. It was found that the adsorbed amount of fibronectin was the same (1.9 ± 0.1 mg m−2) on both silica and methylated silica surfaces. However, the adsorbed layers formed on methylated silica were more extended and had a lower average protein concentration than those formed on silica. Furthermore, on both silica and methylated silica, an increasing adsorbed amount is achieved both by a denser packing of the fibronectin molecules and by a growth of the adsorbed layer normal to the surface. Furthermore, the adsorption of fibronectin on lipid surfaces was investigated. It was found that the adsorption of fibronectin on phosphatidic acid was quite significant (2.2 ± 0.2 mg m−2), while that on phosphatidylcholine, phosphatidylinositol and phosphatidylserine was much smaller (all 0.1 ± 0.05 mg m−2). These results are correlated to findings on the adsorption of fibrinogen on these surfaces, as well as on the opsonization of lipid-stabilized colloidal particles.  相似文献   

19.
The aim of this study is to prepare supermacroporous cryogels embedded with Cu(2+)-attached sporopollenin particles (Cu(2+)-ASP) having large surface area for high protein adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Cu(2+)-ASP was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA). Firstly, Cu(2+) ions were attached to sporopollenin particles (SP), then the supermacroporous PHEMA cryogel with embedded Cu(2+)-ASP was produced by free radical polymerization using N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Embedded particles (10 mg) in PHEMA-based cryogel column were used in the adsorption/desorption of HSA from aqueous solutions. Optimum conditions of adsorption experiments were performed at pH 8.0 phosphate buffer, with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of HSA adsorption from aqueous solution was very high (677.4 mg/g SP) with initial concentration 6 mg/mL. It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Cu(2+)-ASP in PHEMA cryogel without significant loss of adsorption capacity.  相似文献   

20.
In situ conformational analysis of fibrinogen adsorbed on Si surfaces   总被引:5,自引:0,他引:5  
Fibrinogen is a major plasma protein. Previous investigations of structural changes of fibrinogen due to adsorption are mostly based on indirect evidence after its desorption, whereas our measurements were performed on fibrinogen in its adsorbed state. Specific enzyme-linked immunosorption experiments showed that the amount of adsorbed fibrinogen increased as the surface became more hydrophobic. Atomic force microscopy (AFM) investigations revealed the trinodular shape of fibrinogen molecules adsorbed on hydrophilic surfaces, whereas all of the molecules appeared globular on hydrophobic surfaces. The distribution of secondary structures in adsorbed fibrinogen was quantified by in situ Fourier-transform infrared (FTIR) analysis. Substrates of identical chemical bulk composition but different surface hydrophobicity permit direct comparison among them. Adsorption properties of fibrinogen are different for each degree of hydrophobicity. Although there is some increase of turn structure and decrease of β-sheet structure, the secondary structure of adsorbed fibrinogen on hydrophilic surface turned out to be rather similar to that of the protein in solution phase with a major -helix content. Hydrophilic surfaces exhibit superior blood compatibility as required for medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号