首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy dispersive X-ray diffraction was applied to investigate the role of the spacer stereochemistry on the structure of the solid supported aggregates of three stereoisomeric cationic gemini surfactants, 2,3-dimethoxy-1,4-bis-(N-hexadecyl-N,N-dimethylammonio)butane dibromide. Solid-supported Gemini surfactant aggregates self-assemble into highly interdigitated multibilayer stacks. Structural properties, such as the bilayer thickness, the headgroup size, the thickness of the hydrophobic core, and the size of the interbilayer water region, were derived from electron density profiles. Results show that the stereochemistry of the spacer controls the structural properties of the solid-supported interfacial aggregates.  相似文献   

2.
Three cationic gemini surface active compounds of the type (1r,4r)-1,4-dialkyl-1,4-dimethy-l-piperazine-1,4-diium bromide (Ia, Ib, and Ic), were synthesized. They were characterized using elemental analysis and 1H-NMR spectra. Their surface-active properties were measured in aqueous solutions with different concentrations at different temperatures (25, 40, and 55°C). Various surface measurements of these gemini surfactants, (compared to the conventional one, 1-Dodecyl-1-methylpiperidinium bromide (a)) were estimated, specifically critical micelle concentration (CMC), effectiveness (πCMC), efficiency (PC20) as well as maximum surface excess (Γmax) and minimum surface area (Amin). The measurements of the gemini compounds gave low CMC, high efficiency in reducing the surface tension, and intense adsorption at air/water interface. These surfactants have lower Krafft points and thus better solubility. Thermodynamic data, free energy, entropy, and enthalpy changes (ΔG°, ΔS°, and ΔH°) for micellization at the air/water interface and also for adsorption in the bulk of surface-active solutions were calculated.  相似文献   

3.
Novel quaternary ammonium cationic gemini surfactants, with two hydrocarbon chains and an adamantane core, were designed and synthesized by three-step reactions from adamantane. The structure of obtained surfactants were confirmed by 1H NMR, FTIR and elements analysis and the surface properties of these surfactants were also studied by surface tension measurements. These target surfactants exhibit much lower critical micelle concentrations (CMC) and higher efficiency in lowering the surface tension of water than typical surfactants.  相似文献   

4.
A series of novel cationic gemini surfactants with diethylammonium headgroups and a diamido spacer were synthesized, and their surface and bulk properties were investigated by surface tension, electrical conductivity, fluorescence, viscosity, dynamic light scattering (DLS), and transmission electron microscopy (TEM) measurements. An interesting phenomenon, that is, the obvious decline in surface tension upon increasing concentration above the critical micelle concentration (cmc), was found in these gemini surfactant solutions, and two explanations were proposed. This surface tension behavior could be explained by the rapid increase in the counterion activity in the bulk phase or the continued filling of the interface with increasing surfactant concentration above the cmc. More interestingly, not only vesicles but also the surfactant-concentration-induced vesicle to larger aggregate (spongelike aggregate) transition and the salt-induced vesicle and spongelike aggregate to micelle transition were found in the aqueous solutions of these gemini surfactants. The spongelike aggregate that is first reported in the cationic gemini surfactant-water binary system is probably caused by the adhesion and fusion of vesicles at high surfactant concentration.  相似文献   

5.
The aggregation properties of three dicationic quaternary ammonium gemini surfactants with the same structure, except the spacer group, diethyl ether, six methylene, and p-xylyl, have been studied using electrical conductivity and fluorescence. The critical micelle concentration (cmc) and the micelle aggregation number (N) were determined, and the micropolarity and the microviscosity of the micelle were characterized. The micelle ionization degree (alpha) was obtained by a combination of the electrical conductivity data and the micelle aggregation number. Furthermore, the Gibbs free energy of micellization (deltaGmic) was studied. These results have shown that the nature of the spacer has an important effect on the aggregation properties of gemini surfactants in an aqueous solution. A hydrophilic, flexible spacer prompts micelle formation, which leads to a smaller cmc, smaller alpha, larger N, and more negative deltaGmic. Meanwhile, the microviscosity study indicates that the gemini surfactant with a hydrophilic, flexible spacer forms a more closely packed micelle structure than the one with a hydrophobic, rigid spacer.  相似文献   

6.
Twelve new gemini imidazolium surfactants have been synthesized, having dodecyl, tetradecyl, hexadecyl, and octadecyl chain lengths and three different spacers (i.e., -S-(CH(2))(n)-S-), where n = 2, 3, and 4 and their surface properties have been evaluated by surface tension and conductivity methods. The thermal degradation of these new gemini surfactants was determined by thermogravimetric analysis (TGA). These surfactants have low cmc values as compared to other categories of gemini cationic surfactants and exhibit peculiarities at sufficiently low concentration because they were able to form premicellar aggregates over a wide range of concentration below their cmc values. The DNA binding affinity of these gemini surfactants determined by agarose gel electrophoresis and ethidium bromide exclusion experiments established their strong interaction with DNA, thereby protecting it against enzymatic degradation.  相似文献   

7.
The aggregation behavior of cationic gemini surfactants with respect to variation in head group polarity and spacer length is studied through conductance, surface tension, viscosity, and small-angle neutron-scattering (SANS) measurements. The critical micellar concentration (cmc), average degree of micelle ionization (beta(ave)), minimum area per molecule of surfactant at the air-water interface (A(min)), surface excess concentration (gamma(max)), and Gibb's free energy of micellization (delta G(mic)) of the surfactants were determined from conductance and surface tension data. The aggregation numbers (N), dimensions of micelles (b/a), effective fractional charge per monomer (alpha), and hydration of micelles (h(E)) were determined from SANS and viscosity data, respectively. The increasing head group polarity of gemini surfactant with spacer chain length of 4 methylene units promotes micellar growth, leading to a decrease in cmc, beta(ave), and delta G(mic) and an increase in N and b/a. This is well supported by the observed increase in hydration (h(E)) of micelles with increase in aggregation number (N) and dimension (b/a) of micelle.  相似文献   

8.
The condensation of calf thymus DNA into the cholesteric-like psi-phase was observed by circular dichroism in liposome suspensions formulated with specific cationic gemini surfactants. The stereochemistry of the gemini spacer, the presence of specific functional groups, and the covalent link between the headgroups are fundamental issues in the condensation of DNA. Transmission electron microscopy images showed a multilamellar morphology, which corresponds with condensation.  相似文献   

9.
New series of ester functionalized quaternary ammonium gemini surfactants having different ethylene oxide units as spacer have been synthesized and investigated for their aggregation behavior and thermodynamic properties of micellization by surface tension, conductivity, and fluorescence methods. The critical micelle concentration (cmc) of these gemini surfactants increases with the increase in the length of polar hydrophilic ethylene oxide spacer. The micellization process has been found to be entropy-driven and dependent on both the tendency of the hydrophobic group of the surfactants to transfer from aqueous environment to interior of micelle as well as the rearrangement of flexible ester-linked ethylene oxide units (hydrophilic spacer) into aqueous phase. The polar ester functional groups and pairs of nonbonding electrons on oxygen atom of ethylene oxide spacer form hydrogen bonding with water molecules enhancing their solubility in aqueous system.  相似文献   

10.
Sugar-based gemini surfactants (GSs) display rich pH-dependent phase diagrams and are considered to be promising candidates as gene- and drug-delivery vehicles for biomedical applications. Several sugar-based GSs form vesicles around neutral pH. The vesicular dispersions undergo transitions toward wormlike micelles and spherical micelles at acidic pH, whereas flocculation followed by redispersion upon charge reversal is observed at basic pH. The influence of various amounts of the double-tailed phospholipids DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and of the single-tailed surfactants lyso-PC (1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine) and OTAC (octadecyltrimethylammonium chloride) on the phase behavior of GS1 (1,8-bis(N-octadec-9-yl-1-deoxy-D-glucitol-1-ylamino)3,6-dioxaoctane) was determined as a function of pH, in water and in water at physiological ionic strength. The pH corresponding to the phase transitions and the characteristics of the aggregates were determined by means of a combination of physical techniques: static and dynamic light scattering (SLS and DLS), fluorescence spectroscopy, cryo-TEM and diffusion- and (31)P NMR. The results show that the additives affect the phase behavior of the GS1 dispersions in a pH-dependent fashion. In the presence of double-tailed phospholipids, a higher degree of protonation of GS1 must be reached to observe micelle formation, whereas single-tailed surfactants affect these transitions only slightly. In the presence of increasing amounts of lyso-PC, the pH range of flocculation becomes more narrow, indicating the increased hydration of the vesicles. The pH of redispersion after charge reversal is particularly sensitive to the presence of positively charged additives. It is suggested that the cationic headgroups disturb the hydrogen-bond structure of water at the vesicular surface, hampering OH(-) binding. The effect of an increase in ionic strength to physiological values is found to be modest, except for the dispersions containing the positively charged additives.  相似文献   

11.
A theory of cationic dimeric (gemini) surfactant adsorption onto negatively charged surface is presented. In the proposed model it is assumed that the adsorbed phase is a mixture of singly dispersed molecules of surfactant and spherical, globular and cylindrical aggregates of different dimensions. Only the “excluded area” interactions between the adsorbed species are considered and the effects of surface heterogeneity on monomer adsorption are taken into account. The aggregation behavior of gemini surfactants is based on the additive free energy model proposed by Camesano and Nagarajan (2000). The calculated surfactant adsorption isotherms and the differential molar enthalpies of micellisation and adsorption are compared with the experimental results obtained for a series of gemini surfactants depending on the length of a spacer, temperature or the presence of electrolyte. On the basis of theoretical results the evolution of adsorbed phase of gemini surfactants with the increasing adsorption is discussed. It is shown that the evaluated cmc values and the dimensions of surfactant aggregates are in a good agreement with experiment. Unfortunately, the theoretical model does not describe properly the temperature dependence of micellisation process.  相似文献   

12.
A series of dissymmetric gemini imidazolium surfactants with different spacer length ([CmCsCnim]Br2, m + n = 24, m = 12, 14, 16, 18; s = 2, 4, 6) were synthesized and characterized by 1H NMR and ESI-MS spectroscopy. Their adsorption and thermodynamic properties were investigated by the surface tension and electrical conductivity methods. Consequently, the surface activity parameters (cmc, γcmc, πcmc, pC20, cmc/C20, Γmax, Amin) and thermodynamic parameters (ΔGmθ, ΔHmθ, ΔSmθ) were obtained. The effects of the dissymmetry (m/n) and the spacer length (s) on the surface activity and micellization process of surfactants have been discussed in detail.  相似文献   

13.
Mixed micelle formation of binary cationic gemini (12-s-12, s=4, 6) and zwitterionic (N-dodecyl-N,N-dimethylglycine, EBB) surfactants has been investigated by measuring the surface tension of aqueous solution as a function of total concentration at various pH values from acidic to basic, under conditions of 298.15 K and atmospheric pressure. The results were analyzed by applying regular solution theory (RST), and Motomura's theory, which allows for the calculation of the excess Gibbs energy of micellization purely on the basis of thermodynamic equations. The synergistic interactions of all the investigated cationic gemini + zwitterionic surfactants mixtures were found to be dependent upon the pH of the solution and the length of hydrophobic spacer of gemini surfactant. The evaluated excess Gibbs free energy is negative for all the systems.  相似文献   

14.
Dodecanoyl amidoalkylguanidine hydrochlorides (C(12)A(m)G, m = 2, 3, 4, 6) are cationic surfactants that have an amidoalkyl group (A(m)) as spacer between the cationic guanidine and hydrophobic groups in the molecule. The effect of the A(m) group on the aggregation properties of the surfactants was evaluated through measurements of their critical micelle concentration (cmc) value, Krafft point, phase behavior, area occupied by one molecule at the air/water interface, and micellar aggregation number. Dodecylguanidine hydrochloride (C(12)A(0)G) with no A(m) group is a unique cationic surfactant because it exhibits a strong tendency for self-assembly when compared with common ionic surfactants, due to the hydrogen bonding between its guanidine groups in addition to the hydrophobic interaction between its alkyl chains [M. Miyake, K. Yamada, N. Oyama, Langmuir 24 (2008) 8527-8532]. In contrast, C(12)A(m)G showed a decreasing tendency for self-assembly with increasing alkyl chain length, m, of the A(m) group up to m = 3, above which the tendency increased. Such changes in aggregation tendency of the surfactants were suggested to arise from an increased bulkiness of the hydrophilic part caused by the A(m) group, resulting in a decrease in the hydrogen bonding between the guanidine groups and an increase in micellization through the cooperative hydrophobic interaction between the hydrophilic groups. From the balance of these effects, the area of the hydrophilic part of C(12)A(4)G was the largest and the hydrogen bonding between the guanidine groups in C(12)A(4)G was weakened. It is suggested in guanidine-type surfactant that A(4) gave a similar aggregation tendency to traditional ionic surfactants and a weak effect for skin.  相似文献   

15.
The forces acting between glass and between mica surfaces in the presence of two cationic gemini surfactants, 1,4 diDDAB (1,4-butyl-bis(dimethyldodecylammonium bromide)) and 1,12 diDDAB (1,12-dodecyl-bis(dimethyldodecylammonium bromide)), have been investigated below the critical micelle concentration (cmc) of the surfactants using two different surface force techniques. In both cases, it was found that a recharging of the surfaces occurred at a surfactant concentration of about 0.1 x cmc, and at all surfactant concentrations investigated repulsive double-layer forces dominated the interaction at large separations. At smaller separations, attractive forces, or regions of separation with (close to) constant force, were observed. This was interpreted as being due to desorption and rearrangement in the adsorbed layer induced by the proximity of a second surface. Analysis of the decay length of the repulsive double-layer force showed that the majority of the gemini surfactants were fully dissociated. However, the degree of ion pair formation, between a gemini surfactant and a bromide counterion, increased with increasing surfactant concentration and was larger for the gemini surfactant with a shorter spacer length.  相似文献   

16.
Studies of the aggregation behavior of cyclic gemini surfactants   总被引:1,自引:0,他引:1  
The specific conductance, surface tension, mean aggregation number, and apparent molar volume properties of aqueous solutions of a novel series of N,N'-bis(cyclododecyldimethyl)-alpha,omega-alkanediammonium dibromide (c12-s-c12) surfactants, where s is the spacer chain length, are reported. Surfactants with s = 3, 4, and 6 have been prepared and characterized in terms of their Krafft temperature (T(Kr)), critical micelle concentration (cmc), surfactant head group area (a) at the air-water interface, mean aggregation number (N(agg)), and the volume change upon micelle formation (deltaV(phi,M)). The c12-3-c12 shows little evidence of aggregate formation, while the results obtained for the c12-4-c12 and c12-6-c12 homologues suggest the formation of small, poorly defined micellar aggregates in aqueous solution.  相似文献   

17.
Two types of spermine-based gemini surfactants have been synthesised; structure-activity studies have shown one type to be far superior in gene transection than the other.  相似文献   

18.
The aggregation behavior and thermodynamic properties of micellization for the ionic liquid-type gemini imidazolium surfactants with different spacer length ([C12s–C12im]Br2, s = 2, 4, 6) have been investigated by means of surface tension, electrical conductivity, dynamic light scattering and fluorescence measurements. The values of cmc, γ cmc, Γ max, A min, π cmc, pc20 and cmc/pc20 suggest that the shorter the spacer, the higher the surface activity of [C12s–C12im]Br2 is. The cmc and γ cmc values are decreased significantly in the presence of sodium halides, and the values decrease in the order NaCl < NaBr < NaI. The thermodynamic parameters of micellization (, , ) indicate that the micellization of [C12–2–C12im]Br2 and [C12–4–C12im]Br2 is entropy-driven, whereas aggregation of [C12–6–C12im]Br2 is enthalpy-driven at lower temperature but entropy-driven at higher temperature. Finally, the fluorescence measurements show that the micropolarity of micelles increases but the aggregation numbers decrease with increasing the spacer length of [C12s–C12im]Br2.  相似文献   

19.
The aggregation properties of cationic gemini surfactants alkanediyl-alpha,omega-bis(dodecyldimethylammonium bromide), [C(12)H(25)(CH(3))(2)N(CH(2))(m)(CF(2))(n)(CH(2))(m))N(CH(3))(2)C(12)H(25)]Br(2) [where 2m + n = 12 and n = 0, 4, and 6; designated as 12-12-12, 12-12(C(4)(F))-12, and 12-12(C(6)(F))-12, respectively] have been studied by microcalorimetry, time-resolved fluorescence quenching, and electrical conductivity. Compared with a fully hydrocarbon spacer of 12-12-12, the fluorinated spacer with a lower ratio of CF(2) to CH(2) in 12-12(C(4)(F))-12 tends to disfavor the aggregation, leading to larger critical micelle concentration (cmc), lower micelle aggregation number (N), and less negative Gibbs free energy of micellization (DeltaG(mic)). However, the fluorinated spacer with a higher ratio of CF(2) to CH(2) in 12-12(C(6)(F))-12 may prompt the aggregation, resulting in lower cmc, higher N, and more negative DeltaG(mic). It is also noted that enthalpy change of micellization (DeltaH(mic)) for 12-12(C(4)(F))-12 is the most exothermic, but the values of DeltaH(mic) for 12-12-12 and 12-12(C(6)(F))-12 are almost the same. These results are rationalized in terms of competition among the enhanced hydrophobicity and the rigidity of the fluorinated spacer, and the variation of immiscibility of the fluorinated spacer with the hydrocarbon side chains.  相似文献   

20.
Mixed micellization of dimeric cationic surfactants tetramethylene-1,4-bis(hexadecyldimethylammonium bromide)(16-4-16), hexamethylene-1,6-bis(hexadecyldimethylammonium bromide) (16-6-16) with monomeric cationic surfactants hexadecyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB), cetylpyridinium chloride (CPC), and tetradecyltrimethylammonium bromide (TTAB) have been studied by conductivity and steady-state fluorescence quenching techniques. The behavior of mixed systems, their compositions, and activities of the components have been analyzed in the light of Rubingh's regular solution theory. The results indicate synergism in the binary mixtures. Ideal and experimental critical micelle concentrations (i.e., cmc(*) and cmc) show nonideality, which is confirmed by beta values and activity coefficients. The micelle aggregation numbers (N(agg)), evaluated using steady-state fluorescence quenching at a total concentration of 2 mM for CTAB/16-4-16 or 16-6-16 and 5 mM for TTAB/16-4-16 or 16-6-16 systems, indicate that the contribution of conventional surfactants was always more than that of the geminis. The micropolarity, dielectric constant and binding constants (K(sv)) of mixed systems have also been evaluated from the ratios of respective peak intensities (I(1)/I(3) or I(0)/I(1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号