首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The equilibrium geometries, relative stabilities, electronic and magnetic properties of small RhnCa (n = 1–9) clusters have been investigated by DFT calculations. The obtained results show that the three‐dimensional geometries are adopted for the lowest‐energy RhnCa clusters, and the doped Ca atom prefers locating on the surface of the cluster. Based on the analysis of the second‐order difference of energies, fragmentation energies and the HOMO‐LUMO energy gaps, we identify that the Rh4Ca, Rh6Ca, and Rh8Ca clusters are relatively more stable than their neighboring clusters, and the doping of Ca enhances the chemical reactivity of the pure Rhn clusters, suggesting that the RhnCa clusters can be used as nanocatalysts in many catalytic reactions. The magnetic moment for these clusters is mostly localized on the Rh atoms, and the doping Ca atom has no effect on the total magnetic moment of RhnCa clusters. The partial density of states, VIP, VEA, and η of these clusters in their ground‐state structures were also calculated and discussed. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The global minimum structures of AlB3H2n (n = 0–6) clusters are determined using the stochastic search method at the B3LYP/6–31G level of theory. These initially specified geometries are recalculated using B3LYP and CCSD(T) methods using the 6–311++G** basis set. The structural and electronic properties of the two lowest‐lying isomers are presented. The structural parameters obtained for aluminum borohydride are compared with the experimental and theoretical results. The H2 fragmentation energies of the most stable isomers are investigated. Chemical bonding analyses for the global minimum of AlB3H2n (n = 0–6) clusters are performed using the adaptive natural density partitioning method. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The electronic, bonding, and photophysical properties of one‐dimensional [CuCN]n (n = 1–10) chains, 2‐D [CuCN]n (n = 2–10) nanorings, and 3‐D [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes are investigated by means of a multitude of computational methodologies using density functional theory (DFT) and time‐dependent‐density‐functional theory (TD‐DFT) methods. The calculations revealed that the 2‐D [CuCN]n (n = 2–10) nanorings are more stable than the respective 1‐D [CuCN]n (n = 2–10) linear chains. The 2‐D [CuCN]n (n = 2–10) nanorings are predicted to form 3‐D [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes supported by weak stacking interactions, which are clearly visualized as broad regions in real space by the 3D plots of the reduced density gradient. The bonding mechanism in the 1‐D [CuCN]n (n = 1–10) chains, 2‐D [CuCN]n (n = 2–10) nanorings, and 3‐D [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes are easily recognized by a multitude of electronic structure calculation approaches. Particular emphasis was given on the photophysical properties (absorption and emission spectra) of the [CuCN]n chains, nanorings, and tubes which were simulated by TD‐DFT calculations. The absorption and emission bands in the simulated TD‐DFT absorption and emission spectra have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Inspired by the experimental discovery of magic numbers we present a first study using density functional theory for the structure and properties of neutral and cationic Bi6Cu3 and Bi5Cu2 clusters. Our results confirm predictions based on Wade's rules. The closed electron shells, characteristic of cationic clusters help impose enhanced stability, while also complying with Wade's rules. Charge distribution analysis, as well as electrostatic potential maps show that in almost all cases, Bi atoms donate charges to Cu atoms. According to the analysis of condensed Fukui indices, Cu atoms inside both clusters are not reactive. Contrastingly, Bi atoms are reactive and may be targeted by different types of attack. This study of the electronic properties may thus help to determine experimental strategies with the capacity to enhance the synthesis of catalysts.  相似文献   

6.
LaC3n+ (n=0, 1, 2) clusters have been studied using B3LYP (Becke 3-parameter–Lee-Yang-Parr) density functional method. The basis set is Dunning/Huzinaga valence double zeta for carbon and [2s2p2d] for lanthanum, denoted LANL1DZ. Four isomers are presented for each cluster; two of them are edge binding isomers with C2v symmetry, the other two are linear chains with Cv symmetry. Meanwhile, two spin states for each isomer, that is, singlet and triplet for LaC3+, doublet and quartet for LaC3 and LaC32+, respectively, are also considered. Geometries, vibrational frequencies, infrared intensities, and other quantities are reported and discussed. The results indicate that at some spin states; the C2v symmetry isomers are the dominant structures, while for the other spin states, linear isomers are energetically favored. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 301–307, 1998  相似文献   

7.
Endohedral metalloborofullerenes (EMBFs) are novel boron analogues of the famous endohedral metallofullerenes (EMFs). Many EMBFs have been proposed by theoretical calculations thus far. However, in sharp contrast to EMFs, which trap most of the lanthanides with f electrons inside the cages, the corresponding lanthanide‐based EMBFs have never been reported. In this work, the encapsulation of Eu and Gd in the B38 and B40 fullerenes was studied by means of density functional theory calculations. Our results revealed that Gd@B38(9A), Eu@B40(8B2), and Gd@B40(7A″) all favor the endohedral configuration, and the electronic structures can be described as Gd3+@ , Eu2+@ , and Gd3+@ with jailed f electron spins. The large binding energies and sizable HOMO–LUMO gaps suggest that they may be achieved experimentally. They feature σ and π double aromaticity, and their excellent stabilities were confirmed by the Born–Oppenheimer molecular dynamics simulations. Finally, the infrared and UV/vis spectra were simulated to assist experimental characterization.  相似文献   

8.
Global exploration of equilibrium structures and interconversion pathways on the quantum chemical potential energy surface (PES) is performed for (H2CO)n (n = 2–4) by using the Scaled Hypersphere Search‐Anharmonic Downward Distortion Following (SHS‐ADDF) method. Density functional theoretical (DFT) calculations with empirical dispersion corrections (D3) yielded comparable results for formaldehyde dimer in comparison with recent detailed studies at CCSD(T) levels. Based on DFT‐D3 calculations, trimer and tetramer structures and their stabilities were studied. For tetramer, a highly symmetrical S4 structure was found as the most stable form in good accordance with experimentally determined tetramer unit in the formaldehyde crystal. © 2018 Wiley Periodicals, Inc.  相似文献   

9.
LiOH is one of the strong bases among neutral molecules. What about hydroxides of small Lin (n = 2 ? 5) clusters? The addition of a single atom to a cluster sometimes has dramatic effects on its reactivity. This fact motivated us to perform an ab initio MP2/6‐311++G(d, p) investigation on LinOH species (n = 1 ? 5). These LinOH species are stabilized by both ionic as well as covalent interactions, and are found to be stable against elimination of LiOH and OH. We have determined their gas and aqueous phase basicity by considering hypothetical protonation reactions. The calculated proton affinities of LinOH (n ≥ 2) suggest their reduced basicity as compared to LiOH by 50–100 kJ/mol. The NBO charges and the highest occupied molecular orbitals also reveal the electride and alkalide characteristics of Li2OH and Li3OH, respectively. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
The structure and stability of Be6, Be, and Be clusters have been investigated at the B3LYP, B3PW91, and second‐order Møller–Plesset (MP2) levels of theory, along with the 6‐311G* basis set for neutral and cationic clusters and the 6‐311+G* basis set for anion clusters. CCSD(T)/6‐311+G* has also been used to calculate some neutral structure to find the most stable structure. Twelve Be6, six Be, and eight Be isomers are identified. The distortion octahedron structure, pentagonal pyramids structure, and trapezoidal bipyramid structure are found to be the most stable structure on the neutral, cationic, and anionic surface, respectively. They are in agreement with the results reported previously. Natural bond orbital (NBO) analysis, molecular orbital (MO) pictures, and the nucleus independent chemical shift (NICS) values suggest aromatic of the neutral and cationic clusters and antiaromatic of the anionic cluster. The multi‐center σ bonds and delocalized π bonds play important role in the bonding of the beryllium clusters. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

11.
The reactions of [ReX22-N2COPh-N′,O)(PPh3)2] with 4-phenylpyrimidine have been performed. As a result, the two complexes [ReX2(N2COPh)(4-PhPyr)(PPh3)2] (X = Cl, Br) (4-PhPyr = 4-phenylpyrimidine), isostructural in the solid state, have been obtained. The crystal and molecular structures of ([ReCl2(N2COPh)(4-PhPyr)(PPh3)2])2·CHCl3 (1) and ([ReBr2(N2COPh)(4-PhPyr)(PPh3)2])2·CHCl3 (2) have been determined. The electronic structure of [ReCl2(N2COPh)(4-PhPyr)(PPh3)2] has been examined using the density functional theory (DFT) method. The spin-allowed electronic transitions of 1 have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of [ReCl2(N2COPh)(4-PhPyr)(PPh3)2] has been discussed on this basis.  相似文献   

12.
Density functional theory (DFT) calculations within the framework of generalized gradient approximation have been used to systematically investigate the adsorption of nitric oxide (NO) molecule on neutral, cationic, and anionic Pdn (n = 1–5) clusters. NO coordinate to one Pd atom of the cluster by the end‐on mode, where the tilted end‐on structure is more favorable due to the additional electron in the π* orbital. On the contrary, in the neutral and cationic Pd2 system, NO coordinates to the bridge site of cluster preferably by the side‐on mode. Charge transfer between Pd clusters and NO molecule and the corresponding weakening of N? O bond is an essential factor for the adsorption. The N? O stretching frequency follow the order of cationic > neutral > anionic. Binding energy of NO on anionic clusters is found to be greater than those of neutral and cationic clusters. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Theoretical studies are essential for the structural characterization of clusters, when it comes to rationalize their unique size‐dependent properties and composition. However, the rapid growth of local minima on the potential energy surface (PES), with respect to cluster size, makes the candidate identification a challenging undertaking. In this article, we introduce a hybrid strategy to explore the PES of clusters. This proposal involves the use of a biased initial population of a genetic algorithm procedure. Each individual in this population is built by assembling small fragments, according to the best matching of the Fukui function. The performance of a genetic algorithm procedure. The performance of the method is assessed on the PES exploration of medium‐sized Sin clusters (n = 12–20). The most relevant results are: (a) the method converges at almost half of the time used by the canonical version of the GA and, (b) in all the studied cases, with the exception of Si13 and Si16, the method allowed to identify the global minimum (GM) and other important low‐lying structures. Additionally, the apparent deficiency of the proposal to identify the GM was corrected when a Si atom, or other low‐lying isomers, were considered to build the clusters. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
Designing and characterizing the compounds with exotic structures and bonding that seemingly contrast the traditional chemical rules are a never‐ending goal. Although the silicon chemistry is dominated by the tetrahedral picture, many examples with the planar tetracoordinate‐Si skeletons have been discovered, among which simple species usually contain the 17/18 valence electrons. In this work, we report hitherto the most extensive structural search for the pentaatomic ptSi with 14 valence electrons, that is, (n + m = 4; q = 0, ±1, ?2; X, Y = main group elements from H to Br). For 129 studied systems, 50 systems have the ptSi structure as the local minimum. Promisingly, nine systems, that is, , HSiY3 (Y = Al/Ga), Ca3SiAl?, Mg4Si2?, C2LiSi, Si3Y2 (Y = Li/Na/K), each have the global minimum ptSi. The former six systems represent the first prediction. Interestingly, in HSiY3 (Y = Al/Ga), the H‐atom is only bonded to the ptSi‐center via a localized 2c–2e σ bond. This sharply contradicts the known pentaatomic planar‐centered systems, in which the ligands are actively involved in the ligand–ligand bonding besides being bonded to the planar center. Therefore, we proposed here that to generalize the 14e‐ptSi, two strategies can be applied as (1) introducing the alkaline/alkaline‐earth elements and (2) breaking the peripheral bonding. In light of the very limited global ptSi examples, the presently designed six systems with 14e are expected to enrich the exotic ptSi chemistry and welcome future laboratory confirmation. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
The geometries, relative stabilities, and electronic properties of small rubidium‐doped silicon clusters RbSin (n = 1–12) have been systematically investigated using the density functional theory at the B3LYP/GENECP level. The optimized structures show that lowest‐energy isomers of RbSin are similar with the ground state isomers of pure Sin clusters and prefer the three‐dimensional for n = 3–12. The relative stabilities of RbSin clusters have been analyzed on the averaged binding energy, fragmentation energy, second‐order energy difference, and highest occupied molecular orbital‐lowest unoccupied molecular orbital energy gap. The calculated results indicate that the doping of Rb atom enhances the chemical activity of Sin frame and the magic number is RbSi2. The Mulliken population analysis reveals that the charges in the corresponding RbSin clusters transfer from the Rb atom to Si atoms. The partial density of states and chemical hardness are also discussed. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Systematic addition of Li atoms to the Be2B8 and Be2B36 backbones has been studied by density functional theory‐based calculations with the aim to investigate properties of interest on possible anode materials for Li‐based batteries. For the Be2B8Lin (n = 1–8) and the Be2B36Lin (n = 1–20) systems, lithium salts are dominant whereas a clear electride feature shows up for Be2B8Lin (n = 9–14) and Be2B36Li21. Addition of hydrogen radicals to these systems shows that the Be2B8Li14 electride becomes a Be2B8Li14H2 hydride electride whereas Be2B36Li21 leads to a Be2B36Li21H salt. Moreover, for the addition of Li atoms to Be2B8 and the Be2B36 backbones, large values of the interaction and of the adsorption energy per Li atom, high specific capacity of Be2B8Li14 and of Be2B36Li21 (1860 and 1017 mAh g−1, respectively) and low and flat voltage associated with lithiation have been found. Likewise, the considerable thermodynamic driving force (ΔG° = −29.66 kcal/mol) and the small energy barrier ( = 0.26 kcal/mol) associated with electron transfer in Be2B36Li21 and Be2B36 species confirm that boron rich species have potential abilities to be used in the Li‐based battery. © 2018 Wiley Periodicals, Inc.  相似文献   

17.
18.
Reaction of a trithiol ligand, 2-(mercaptomethyl)-2-methylpropane-1,3-dithiol (H3L), with tri-iron dodecacarbonyl in toluene produces two hexa-iron clusters (1 and 2). The two clusters are characterised crystallographically and spectroscopically. NMR spectroscopy reveals that the cluster 2 exists in two conformations in equilibrium 2anti ⇔ 2syn and the equilibrium constant Keq = 0.55 under CO atmosphere. In the cluster 2, the central {Fe2S2(CO)6} sub-unit is flanked by two identical {Fe2S2(CO)6} satellite sub-units through thiolate linkages whereas one of the thiolate linkages can further form Fe-S bond with the proximal Fe atom in one of the two satellite sub-units to produce the cluster 1 by expelling one CO. This conversion can be entirely reversed by continuously purging CO through the solution of the cluster 1. As suggested by DFT calculations, the conversion features a key step, the rotation of the Feprox(CO)3 to expose a vacant site for exogenic ligand binding (the S atom from the central sub-unit in this case) with concomitant switch for one of the three CO ligands in the unit of Feprox(CO)3 from terminal to bridging orientation. The conversion from the clusters 1-2 involving one CO uptake is much faster than its reverse process since the latter is an endergonic process characterised by large reaction barriers, as revealed by the DFT calculations.  相似文献   

19.
Density functional theory and ab initio calculations were performed to elucidate the hydrogen interactions in (H2O4)n (n = 1–4) clusters. The optimized geometries, binding energies, and harmonic vibrational frequencies were predicted at various levels of theory. The trans conformer of the H2O4 monomer was predicted to be the most stable structure at the CCSD(T)/aug‐cc‐pVTZ level of theory. The binding energies per H2O4 monomer increased in absolute value by 9.0, 10.1, and 11.8 kcal/mol from n = 2 to n = 4 at the MP2/cc‐pVTZ level of theory (after the zero‐point vibrational energy and basis set superposition error corrections). This result implies that the intermolecular hydrogen bonds were stronger in the long‐chain clusters, that is, the formation of the longer chain in the (H2O4)n clusters was more energetically favorable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号