首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We have investigated the stepwise addition of four growing methyl methacrylate (MMA) radicals to C60 fullerene, taking into account all possible types of the formed adducts. This reaction set is a reliable approximation for understanding the MMA polymerization process in the presence of C60 fullerene. We have analyzed the structures of the fullerene-MMA adducts and energy parameters of their formation (heat effects and activation enthalpies). We found that up to three MMA growing radicals are favorably attached to C60 as the fullerene-MMA trisadduct is a stable radical of the allyl type. It is inactive for further radical addition, and the elimination of the hydrogen atom from the growing MMA radical becomes preferable. The effects of steric factors and structures of the products of multiple growing MMA radical additions to C60 on the radical polymerization of MMA in the presence of C60 fullerene are considered.  相似文献   

2.
The quantum-chemical simulation of possible reactions occurring at the initial stage of the free-radical polymerizations of styrene and methyl methacrylate in the presence of fullerene C60 is performed. The reactions of interaction between initiating and model short-chain growing radicals containing from one to three monomer units with fullerene are considered. It is shown that, at the initial stage of styrene polymerization, the addition of short-chain growing radicals to fullerene predominates (with respect to the reaction of chain propagation). In the case of methyl methacrylate polymerization in the presence of fullerene C60, the induction period is absent because of a higher probability of the initiation and chain propagation reactions (compared with the chain-termination reaction of short growing poly(methyl methacrylate) chains on fullerene C60). The formation of bis- and trisadducts of fullerene C60 with short-chain styrene and methyl methacrylate growing radicals is analyzed. The quantum-chemical simulation results are confirmed by electron spectroscopy and ESR studies.  相似文献   

3.
The grafting reaction of poly(1,3‐cyclohexadienyl)lithium onto fullerene‐C60 (C60) was strongly affected by the nucleophilicity of poly(1,3‐cyclohexadiene) (PCHD) carbanions and the polymer chain microstructure, and progressed via step‐by‐step reactions. A star‐shaped PCHD, having a maximum of four arms, was obtained from poly(1,3‐cyclohexadienyl)lithium composed of all 1,4‐cyclohexadiene (1,4‐CHD) units. The rate of the grafting reaction was accelerated by the addition of amine. The grafting density of PCHD arms onto C60 decreased with an increase in the molar ratio of 1,2‐cyclohexadiene (1,2‐CHD) units. The electron‐transfer reaction from PCHD carbanions to C60 did not occur in either a nonpolar solvent or a polar solvent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3282–3293, 2008.  相似文献   

4.
曾和平 《中国化学》2002,20(10):1007-1011
Photoinduced electron transfer(PET) processes between C60-C6H8SO and Tetrathiafulvalene(TTF) have been studied by nanosecond laser photolysis.Quantrm yiekds(φet) and rate constants of electron transfer(ket) from TTF to excited triplet state of[60] fullerene-containing cyclic sulphoxide in benzonitrile(BN) have been evaluated by observing the transient absorption bands in the NIR region.With the decay of excited triplet state of [60]fullerene-containing cyclic suplhoxide,the rise of radical anion of [60]fullerene-containing cyclic sulphoxinde is observed.  相似文献   

5.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   

6.
Donor–acceptor distance, orientation, and photoexcitation wavelength are key factors in governing the efficiency and mechanism of electron‐transfer reactions both in natural and synthetic systems. Although distance and orientation effects have been successfully demonstrated in simple donor–acceptor dyads, revealing excitation‐wavelength‐dependent photochemical properties demands multimodular, photosynthetic‐reaction‐center model compounds. Here, we successfully demonstrate donor– acceptor excitation‐wavelength‐dependent, ultrafast charge separation and charge recombination in newly synthesized, novel tetrads featuring bisferrocene, BF2‐chelated azadipyrromethene, and fullerene entities. The tetrads synthesized using multistep synthetic procedure revealed characteristic optical, redox, and photo reactivities of the individual components and featured “closely” and “distantly” positioned donor–acceptor systems. The near‐IR‐emitting BF2‐chelated azadipyrromethene acted as a photosensitizing electron acceptor along with fullerene, while the ferrocene entities acted as electron donors. Both tetrads revealed excitation‐wavelength‐dependent, photoinduced, electron‐transfer events as probed by femtosecond transient absorption spectroscopy. That is, formation of the Fc+–ADP–C60.? charge‐separated state upon C60 excitation, and Fc+–ADP.?–C60 formation upon ADP excitation is demonstrated.  相似文献   

7.
Br‐terminated polystyrenes of controlled molar masses and low polydispersities prepared by atom transfer radical polymerization (ATRP) can be converted to macroradicals using an appropriate catalytic complex (CuBr/bipyridine/100 °C). The addition of this macroradicals PS° to 6–6 bonds of C60 follows a specific atom transfer radical addition mechanism that favors the grafting of even number of chains onto the fullerene core. This peculiar mechanism, resulting from the properties of C60, offers an easy synthetic route toward well‐defined di‐ and tetra‐adducts. In these adducts the disturbance of the electronic structure of the fullerene is kept at its minimum, as only one double bond needs to be opened on the C60 to add two PS chains and only two double bonds are converted to single bonds in the tetra‐adduct. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3456–3463, 2004  相似文献   

8.
It has been demonstrated experimentally and theoretically that the essentially different inhibiting effects of fullerene C60 on the initial stage of the polymerizations of styrene and methyl methacrylate (including complete hampering of styrene polymerization throughout a long induction period) are of common kinetic nature. The difference arises from the competition between C60 and the monomer not for initiating radicals but for radicals originating from the monomer; that is, the difference stems from the competition between the chain propagation reactions and the termination reactions on fullerene molecules. As a consequence, the further development of the process is determined by the relative reactivities of the radicals toward C60 and towards their parent monomers.  相似文献   

9.
Novel bay‐functionalized perylene diimides with additional substitution sites close to the perylene core have been prepared by the reaction between 1,7(6)‐dibromoperylene diimide 6 (dibromo‐PDI) and 2‐(benzyloxymethyl)pyrrolidine 5 . Distinct differences in the chemical behaviors of the 1,7‐ and 1,6‐regioisomers have been discerned. While the 1,6‐dibromo‐PDI produced the corresponding 1,6‐bis‐substituted derivative more efficiently, the 1,7‐dibromo‐PDI underwent predominant mono‐debromination, yielding a mono‐substituted PDI along with a small amount of the corresponding 1,7‐bis‐substituted compound. By varying the reaction conditions, a controlled stepwise bis‐substitution of the bromo substituents was also achieved, allowing the direct synthesis of asymmetrical 1,6‐ and 1,7‐PDIs. The compounds were isolated as individual regioisomers. Fullerene (C60) was then covalently linked at the bay region of the newly prepared PDIs. In this way, two separate sets of perylene diimide–fullerene dyads, namely single‐bridged (SB‐1,7‐PDI‐C60 and SB‐1,6‐PDI‐C60) and double‐bridged (DB‐1,7‐PDI‐C60 and DB‐1,6‐PDI‐C60), were synthesized. The fullerene was intentionally attached at the bay region of the PDI to achieve close proximity of the two chromophores and to ensure an efficient photoinduced electron transfer. A detailed study of the photodynamics has revealed that photoinduced electron transfer from the perylene diimide chromophore to the fullerene occurs in all four dyads in polar benzonitrile, and also occurs in the single‐bridged dyads in nonpolar toluene. The process was found to be substantially faster and more efficient in the dyads containing the 1,7‐regioisomer, both for the singly‐ and double‐bridged molecules. In the case of the single‐bridged dyads, SB‐1,7‐PDI‐C60 and SB‐1,6‐PDI‐C60, different relaxation pathways of their charge‐separated states have been discovered. To the best of our knowledge, this is the first observation of photoinduced electron transfer in PDI‐C60 dyads in a nonpolar medium.  相似文献   

10.
A ruthenium complex, porphyrin sensitizer, fullerene acceptor molecular pentad has been synthesized and a long‐lived hole–electron pair was achieved in aqueous solution by photoinduced multistep electron transfer: Upon irradiation by visible light, the excited‐state of a zinc porphyrin (1ZnP*) was quenched by fullerene (C60) to afford a radical ion pair, 1,3(ZnP.+‐C60.−). This was followed by the subsequent electron transfer from a water oxidation catalyst unit (RuII) to ZnP.+ to give the long‐lived charge‐separated state, RuIII‐ZnP‐C60.−, with a lifetime of 14 μs. The ZnP worked as a visible‐light‐harvesting antenna, while the C60 acted as an excellent electron acceptor. As a consequence, visible‐light‐driven water oxidation by this integrated photosynthetic model compound was achieved in the presence of sacrificial oxidant and redox mediator.  相似文献   

11.
Hexasubstituted fullerenes with the skew pentagonal pyramid (SPP) addition pattern are predominantly formed in many types of reactions and represent important and versatile building blocks for supramolecular chemistry, biomedical and optoelectronic applications. Regioselective synthesis and characterization of the new SPP derivative, C60(CF3)4(CN)H, in this work led to the experimental identification of the new family of “superhalogen fullerene radicals”, species with the gas‐phase electron affinity higher than that of the most electronegative halogens, F and Cl. Low‐temperature photoelectron spectroscopy and DFT studies of different C60X5 radicals reveal a profound effect of X groups on their electron affinities (EA), which vary from 2.76 eV (X=CH3) to 4.47 eV (X=CN). The measured gas‐phase EA of the newly synthesized C60(CF3)4CN equals 4.28 (1) eV, which is about 1 eV higher than the EA of Cl atom. An observed remarkable stability of C60(CF3)4CN? in solution under ambient conditions opens new venues for design of air‐stable molecular complexes and salts for supramolecular structures of electroactive functional materials.  相似文献   

12.
The ATRP (atom‐transfer radical polymerization) process was used to synthesize C60 end‐capped polystyrene. GPC data demonstrated that fullerene (C60) was chemically bonded to polystyrene, and C60 was most likely monosubstituted. Matrix‐assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrometry (MS) analysis (with 1,8‐dihydroxy‐9(10H)‐anthracenone (dithranol)/silver trifluoroacetate as the matrix) of this copolymer proved that C60 was monosubstituted.  相似文献   

13.
Tris(9′,10′‐dimethyl[9,10]ethanoanthracene[11′,12′: 1,9;11″,12″: 16,17;11′′′,12′′′: 30,31])[5,6]fullerene C60, the orthogonal (e,e,e)‐tris‐adduct of C60 and 9,10‐dimethylanthracene, was obtained from [4+2]‐cycloaddition (Diels–Alder reaction) at room temperature. The thermally unstable orange red (e,e,e)‐tris‐adduct was purified by chromatography and was isolated in the form of red monoclinic crystals. Its C3‐symmetric addition pattern was established spectroscopically. Its structure could be further investigated by single crystal X‐ray diffraction. The (e,e,e)‐tris‐adduct of C60 and 9,10‐dimethylanthracene has earlier been suggested as intermediate and reversibly formed critical component in ‘template directed’ addition reactions of C60. This previously elusive compound has now been isolated and structurally characterized.  相似文献   

14.
The reactions of 3‐butenyl (?CH2CH2CH?CH2) radicals—unimolecular decomposition, isomerization, as well as reaction with O2—and the subsequent unimolecular rearrangement reactions of the 3‐butenylperoxy radicals have been investigated and are compared to the analogous reactions of butyl (?CH2CH2CH2CH3) and butylperoxy radicals using transition‐state theory based on the quantum chemical calculations at the CBS‐QB3 level. For alkyl‐analogue processes, the reactions of 3‐butenyl and 3‐butenylperoxy radicals can be well characterized by the decreased and increased bond dissociation energies at the allylic and vinylic sites, respectively. The intramolecular addition reactions of the radical center atoms to the double bonds were found to be important non‐alkyl‐analogue reactions of 3‐butenyl and 3‐butenylperoxy radicals. As a consequence, the thermal decomposition of 3‐butenyl radicals was found to be slower than that of butyl radicals by one order of magnitude at temperature near 1000 K. Intramolecular addition reactions are suggested to be the predominant unimolecular rearrangement processes of 3‐butenylperoxy radicals over the entire temperature range investigated (500–1200 K). The intramolecular addition reactions of the alkenyl peroxy radicals, which have not been included in combustion kinetic models, and their implications for the autoignition of alkenes are discussed. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 273–288, 2010  相似文献   

15.
C60 fullerene was radiolyzed in toluene solution both in presence of air and in vacuum at four different radiation doses 12, 24, 36, 48 and 96 kGy. Clear evidences of the addition of benzyl radicals to the fullerene cage derive from FT-IR and C13-NMR spectra of the reaction product. In presence of air the interference of oxygen is evident in the FT-IR spectra and from the elemental analysis. A detailed analysis of the kinetics of the multiple addition of benzyl radicals to the fullerene cage was made spectrophotometrically with the determination of the addition rate constants at the each addition step and the average number of benzyl groups added to the fullerene cage as function of the radiation dose.  相似文献   

16.
High‐spin states of the Si60 fullerene and its oligomers are considered semiempirically by using sequential and parallel implementations of the AM1 codes. The states are energetically favorable and nearly degenerated over triplet, quintet, and septet spins. All atoms of the Si60 fullerene are in sp3‐configuration, which is supported by atomic spin density in addition to electron density, the latter to be responsible for the formation of chemical bonds. Spotted distribution of spin density over atoms provides molecular magnetism of the molecule. A similar picture is disclosed for oligomers {Si60}n with n up to 8, which according to computational results should be magnetic with a fractal‐like distribution of spin density over atoms. Opposite the latter, composites Si60C60 and Si60H60 behave conventionally and are nonmagnetic. A way of the Si60 fullerene synthesizing is suggested via the above composite product as intermediates. The considered oligomers are proposed as a model of silicon nanofibers observed recently. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

17.
The C3‐symmetrical [60]fullerene‐cyclotriveratrylene (CTV) tris‐adducts (±)‐ 1 (with a trans‐3,trans‐3,trans‐3 addition pattern) and (±)‐ 2 (with an e,e,e addition pattern) were prepared in 11 and 9% yield, respectively, by the regio‐ and diastereoselective tether‐directed Bingel reaction of C60 with the tris‐malonate‐appended CTV derivative (±)‐ 3 (Scheme). This is the first example for tris‐adduct formation by a one‐step tether‐directed Bingel addition. Interchromophoric interactions between the electron‐rich CTV cap and the electron‐attracting fullerene moiety have a profound effect on the electrochemical behavior of the C‐sphere (Fig. 4 and Table 1). The fullerene‐centered first reduction potentials in compounds (±)‐ 1 and (±)‐ 2 are by 100 mV more negative than those of their corresponding tris[bis(ethoxycarbonyl)methano][60]fullerene analogs that lack the CTV cap. A particular interest in (±)‐ 1 and (±)‐ 2 arises from the topological chirality of these molecules. A complete topology study is presented, leading to the conclusion that the four possible classical stereoisomers of the e,e,e regioisomer are topologically different, and, therefore, there exist four different topological stereoisomers (Fig. 6). Interestingly, in the case of the trans‐3,trans‐3,trans‐3 tris‐adduct, there are four classical stereoisomers but only two topological stereoisomers (Fig. 7). An example of a target molecule representing a topological meso‐form is also presented (Fig. 8).  相似文献   

18.
A liquid‐crystalline mixed [5 : 1]hexa‐adduct of [60]fullerene was synthesized by addition of two different malonate derivatives onto C60. The hexa‐adduct derivative 2 was prepared by a stepwise synthetic procedure (fullerene→mono‐adduct of C60→hexa‐adduct of C60). Cyanobiphenyl and octyloxybiphenyl derivatives were selected as mesogens. The malonate derivatives showed either a monotropic nematic phase or a monotropic smectic A phase, and the hexa‐adduct derivative gave rise to an enantiotropic smectic A phase.  相似文献   

19.
Closely positioned donor–acceptor pairs facilitate electron‐ and energy‐transfer events, relevant to light energy conversion. Here, a triad system TPACor‐C60 , possessing a free‐base corrole as central unit that linked the energy donor triphenylamine ( TPA ) at the meso position and an electron acceptor fullerene (C60) at the β‐pyrrole position was newly synthesized, as were the component dyads TPA‐Cor and Cor‐C60 . Spectroscopic, electrochemical, and DFT studies confirmed the molecular integrity and existence of a moderate level of intramolecular interactions between the components. Steady‐state fluorescence studies showed efficient energy transfer from 1 TPA* to the corrole and subsequent electron transfer from 1corrole* to fullerene. Further studies involving femtosecond and nanosecond laser flash photolysis confirmed electron transfer to be the quenching mechanism of corrole emission, in which the electron‐transfer products, the corrole radical cation ( Cor?+ in Cor‐C60 and TPA‐Cor?+ in TPACor‐C60 ) and fullerene radical anion (C60??), could be spectrally characterized. Owing to the close proximity of the donor and acceptor entities in the dyad and triad, the rate of charge separation, kCS, was found to be about 1011 s?1, suggesting the occurrence of an ultrafast charge‐separation process. Interestingly, although an order of magnitude slower than kCS, the rate of charge recombination, kCR, was also found to be rapid (kCR≈1010 s?1), and both processes followed the solvent polarity trend DMF>benzonitrile>THF>toluene. The charge‐separated species relaxed directly to the ground state in polar solvents while in toluene, formation of 3corrole* was observed, thus implying that the energy of the charge‐separated state in a nonpolar solvent is higher than the energy of 3corrole* being about 1.52 eV. That is, ultrafast formation of a high‐energy charge‐separated state in toluene has been achieved in these closely spaced corrole–fullerene donor–acceptor conjugates.  相似文献   

20.
Photodynamic therapy (PDT) is a widely used medicinal treatment for the cancer therapy that utilizes the combination of a photosensitizer (PS) and light irradiation. In this study, we synthesized two novel C60 fullerene derivatives, compounds 1 and 2 , with a psoralen moiety that can covalently bind to DNA molecules via cross‐linking to pyrimidine under photoirradiation. Along with several fullerene derivatives, the biological properties of several novel compounds have been evaluated. Compounds 1 and 2 , which have been shown to induce the production of hydroxyl radicals using several ROS detecting reagents, induced DNA strand breaks with relatively weak activities in the in vitro detection system using a supercoiled plasmid. However, the psoralen‐bound fullerene with carboxyl groups ( 2 ) only showed genotoxicity in the genotoxicity assay system of the umu test. Compound 2 was also seen to have cytotoxic activities in several cancer cell lines at higher doses compared to water‐soluble fullerenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号