首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As promising candidates for protecting against both overcharge and overdischarge of lithium-ion batteries, the shuttle molecules should be named. Considering the action mechanism of these molecules, it is turned out that their oxidation energies are important factors. Alongside the experimental efforts, computational chemistry within density functional theory (DFT) can play imperative roles in this respect. In the present contribution, in order to predict the oxidation energies of shuttle molecules the double-hybrid (DH) approximations from DFT are of concern. In particular, applicability of the recently proposed DHs including parameterized, parameter-free, and spin-opposite-scaled functionals is evaluated for our purpose. With more or less different accountabilities of the DHs under study, it is revealed that from the parameterized and parameter-free approximations, the B2-PLYP and Perdew-Burke-Ernzerhof (PBE)-cubic integrand DH (CIDH) functionals, respectively, have the lowest deviations while the SOS0-PBE0-DH is the winner against others within the category of spin-opposite-scaled DHs. Perusing the role of both nonlocal exchange and correlation contributions in the energy expression of DHs on the predicted oxidation energies unveils that the high fractions of these terms do not guarantee better performance, but an appropriate proportion between the two is needed to achieve a reliable accuracy. Although this study ascertains the efficiency of DHs for describing the oxidation energies of shuttle molecules candidates, we hope that our findings can function as an inspiring avenue to develop novel DH approximations with a broad range of applications in electrochemistry.  相似文献   

2.
Following up on an earlier preliminary communication (Kozuch and Martin, Phys. Chem. Chem. Phys. 2011, 13 , 20104), we report here in detail on an extensive search for the most accurate spin‐component‐scaled double hybrid functionals [of which conventional double hybrids (DHs) are a special case]. Such fifth‐rung functionals approach the performance of composite ab initio methods such as G3 theory at a fraction of their computational cost, and with analytical derivatives available. In this article, we provide a critical analysis of the variables and components that maximize the accuracy of DHs. These include the selection of the exchange and correlation functionals, the coefficients of each component [density functional theory (DFT), exact exchange, and perturbative correlation in both the same spin and opposite spin terms], and the addition of an adhoc dispersion correction; we have termed these parametrizations “DSD‐DFT” (Dispersion corrected, Spin‐component scaled, Double‐hybrid DFT). Somewhat surprisingly, the quality of DSD‐DFT is only mildly dependent on the underlying DFT exchange and correlation components, with even DSD‐LDA yielding respectable performance. Simple, nonempirical GGAs appear to work best, whereas meta‐GGAs offer no advantage (with the notable exception of B95c). The best correlation components appear to be, in that order, B95c, P86, and PBEc, while essentially any good GGA exchange yields nearly identical results. On further validation with a wider variety of thermochemical, weak interaction, kinetic, and spectroscopic benchmarks, we find that the best functionals are, roughly in that order, DSD‐PBEhB95, DSD‐PBEP86, DSD‐PBEPW91, and DSD‐PBEPBE. In addition, DSD‐PBEP86 and DSD‐PBEPBE can be used without source code modifications in a wider variety of electronic structure codes. Sample job decks for several commonly used such codes are supplied as electronic Supporting Information. Copyright © 2013 Wiley Periodicals, Inc.  相似文献   

3.
We have compared the performances of the one‐parameter and linearly scaled one‐parameter double‐hybrid density functionals (1DH‐DFs and LS1DH‐DFs) for noncovalent interactions. The only one parameter related to the Hartree–Fock (HF) exchange for each of the tested 1DH‐DFs and LS1DH‐DFs has been fitted with the well‐designed S66 database. The obtained DHDFs are dubbed as 1DH‐PBE‐NC, LS1DH‐PBE‐NC, 1DH‐TPSS‐NC, LS1DH‐TPSS‐NC, 1DH‐PWB95‐NC, and LS1DH‐PWB95‐NC, where “NC” denotes noncovalent interactions. With a specific combination of exchange and correlation functionals, the dependent parameters related to the nonlocal second‐order perturbative energies are nearly identical for the 1DH and LS1DH models. According to our benchmark computations against the S66, S22B, NCCE31, ADIM6, and L7 databases, we suggest that the 1DH‐PWB95‐NC and LS1DH‐PWB95‐NC functionals are much more suitable for evaluating noncovalent interaction energies. Unlike the versatile DHDFs with dispersion corrections for general purpose, our optimized 1DH‐DFs and LS1DH‐DFs only aim at noncovalent interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
5.
The hydrogen‐bond energies of water dimer and water‐formaldehyde complexes have been studied using density functional theory (DFT). Basis sets up to aug‐cc‐pVXZ (X=D, T, Q) were used. It was found that counterpoise corrected binding energies using the aug‐cc‐pVDZ basis set are very close to those predicted with the aug‐cc‐pVQZ set. Comparative studies using various DFT functionals on these two systems show that results from B3LYP, mPW1PW91 and PW91PW91 functionals are in better agreements with those predicted using high‐level ab initio methods. These functionals were applied to the study of hydrogen bonding between guanine (G) and cytosine (C), and between adenine (A) and thy mine (T) base pairs. With the aug‐cc‐pVDZ basis set, the predicted binding energies of base pairs are in good agreement with the most elaborate ab initio results.  相似文献   

6.
Density functional theory (DFT) is the only quantum‐chemical avenue for calculating thermochemical/kinetic properties of large polycyclic aromatic hydrocarbons (PAHs) such as graphene nanoflakes. Using CCSD(T)/CBS PAH isomerization energies, we find that all generalized gradient approximation (GGA) and meta GGA DFT functionals have severe difficulties in describing isomerization energies in PAHs. The poor performance of these functionals is demonstrated by the following root‐mean‐square deviations (RMSDs) obtained for a database of C14H10 and C18H12 isomerization energies. The RMSDs for the GGAs range between 6.0 (BP86‐D3) and 23.0 (SOGGA11) and for the meta GGAs they range between 3.5 (MN12‐L) and 11.9 (τ‐HCTH) kJ mol−1. These functionals (including the dispersion‐corrected methods) systematically and significantly underestimate the isomerization energies. A consequence of this behavior is that they all predict that chrysene (rather than triphenylene) is the most stable C18H12 isomer. A general improvement in performance is observed along the rungs of Jacob's Ladder; however, only a handful of functionals from rung four give good performance for PAH isomerization energies. These include functionals with high percentages (40–50%) of exact Hartree–Fock exchange such as the hybrid GGA SOGGA11‐X (RMSD = 1.7 kJ mol−1) and the hybrid‐meta GGA BMK (RMSD = 1.3 kJ mol−1). Alternatively, the inclusion of lower percentages (20–30%) of exact exchange in conjunction with an empirical dispersion correction results in good performance. For example, the hybrid GGA PBE0‐D3 attains an RMSD of 1.5 kJ mol−1, and the hybrid‐meta GGAs PW6B95‐D3 and B1B95‐D3 result in RMSDs below 1 kJ mol−1. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The seven main crystal surfaces of forsterite (Mg2SiO4) were modeled using various Gaussian‐type basis sets, and several formulations for the exchange‐correlation functional within the density functional theory (DFT). The recently developed pob‐TZVP basis set provides the best results for all properties that are strongly dependent on the accuracy of the wavefunction. Convergence on the structure and on the basis set superposition error‐corrected surface energy can be reached also with poorer basis sets. The effect of adopting different DFT functionals was assessed. All functionals give the same stability order for the various surfaces. Surfaces do not exhibit any major structural differences when optimized with different functionals, except for higher energy orientations where major rearrangements occur around the Mg sites at the surface or subsurface. When dispersions are not accounted for, all functionals provide similar surface energies. The inclusion of empirical dispersions raises the energy of all surfaces by a nearly systematic value proportional to the scaling factor s of the dispersion formulation. An estimation for the surface energy is provided through adopting C6 coefficients that are more suitable than the standard ones to describe O? O interactions in minerals. A 2 × 2 supercell of the most stable surface (010) was optimized. No surface reconstruction was observed. The resulting structure and surface energy show no difference with respect to those obtained when using the primitive cell. This result validates the (010) surface model here adopted, that will serve as a reference for future studies on adsorption and reactivity of water and carbon dioxide at this interface. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Eleven exchange‐correlational functionals of different types corrected for dispersion by Grimme's D3 correction in conjunction with the aug‐cc‐pVTZ basis set were tested on the following noble gas (Ng) dimers: Ne2, Ar2, Kr2, Xe2, and Rn2. For comparison, the D2 and D3BJ corrections were probed with the B3LYP functional. From post‐HF wavefunction methods, CCSD(T) theory was also included. The investigated properties involved potential energy curves, equilibrium bond distances, and interaction energies. The B3LYP‐D3, B3LYP‐D3BJ, and PBE0‐D3 functionals performed overall best for bond distances, while B3LYP‐D3 and B97‐D3 performed best for interaction energies. The importance of fortunate error cancellations was seen in the often reduced agreement with reference data upon correction for BSSE. As several functionals performed well selectively for some noble gases (and poorly for others), we also analysed the performance on the Ng2 dimers individually and recommended DFT‐D3 functionals for the calculation of large clusters of each Ng.  相似文献   

9.
Ionic liquids (ILs) play a key role in many chemical applications. As regards the theoretical approach, ILs show added difficulties in calculations due to the composition of the ion pair and to the fact that they are liquids. Although density functional theory (DFT) can treat this kind of systems to predict physico–chemical properties, common versions of these methods fail to perform accurate predictions of geometries, interaction energies, dipole moments, and other properties related to the molecular structure. In these cases, dispersion and self‐interaction error (SIE) corrections need to be introduced to improve DFT calculations involving ILs. We show that the inclusion of dispersion is needed to obtain good geometries and accurate interaction energies. SIE needs to be corrected to describe the charges and dipoles in the ion pair correctly. The use of range–separated functionals allows us to obtain interaction energies close to the CCSD(T) level. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
11.
CCSD(T)/CBS energies for stacking of nickel and copper chelates are calculated and used as benchmark data for evaluating the performance of dispersion‐corrected density functionals for calculating the interaction energies. The best functionals for modeling the stacking of benzene with the nickel chelate are M06HF‐D3 with the def2‐TZVP basis set, and B3LYP‐D3 with either def2‐TZVP or aug‐cc‐pVDZ basis set, whereas for copper chelate the PBE0‐D3 with def2‐TZVP basis set yielded the best results. M06L‐D3 with aug‐cc‐pVDZ gives satisfying results for both chelates. Most of the tested dispersion‐corrected density functionals do not reproduce the benchmark data for stacking of benzene with both nickel (no unpaired electrons) and copper chelate (one unpaired electron), whereas a number of these functionals perform well for interactions of organic molecules.  相似文献   

12.
The possibility of quantitative reaction analysis on the orbital energies of long‐range corrected density functional theory (LC‐DFT) is presented. First, we calculated the Diels–Alder reaction enthalpies that have been poorly given by conventional functionals including B3LYP functional. As a result, it is found that the long‐range correction drastically improves the reaction enthalpies. The barrier height energies were also computed for these reactions. Consequently, we found that dispersion correlation correction is also crucial to give accurate barrier height energies. It is, therefore, concluded that both long‐range exchange interactions and dispersion correlations are essentially required in conventional functionals to investigate Diels–Alder reactions quantitatively. After confirming that LC‐DFT accurately reproduces the orbital energies of the reactant and product molecules of the Diels–Alder reactions, the global hardness responses, the halves of highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) energy gaps, along the intrinsic reaction coordinates of two Diels–Alder reactions were computed. We noticed that LC‐DFT results satisfy the maximum hardness rule for overall reaction paths while conventional functionals violate this rule on the reaction pathways. Furthermore, our results also show that the HOMO‐LUMO gap variations are close to the reaction enthalpies for these Diels–Alder reactions. Based on these results, we foresee quantitative reaction analysis on the orbital energies. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
15.
The physisorption of water on graphene is investigated with the hybrid density functional theory (DFT)‐functional B3LYP combined with empirical corrections, using moderate‐sized basis sets such as 6‐31G(d). This setup allows to model the interaction of water with graphene going beyond the quality of classical or semiclassical simulations, while still keeping the computational costs under control. Good agreement with respect to Coupled Cluster with singles and doubles excitations and perturbative triples (CCSD(T)) results is achieved for the adsorption of a single water molecule in a benchmark with two DFT‐functionals (Perdew/Burke/Ernzerhof (PBE), B3LYP) and Grimme's empirical dispersion and counterpoise corrections. We apply the same setting to graphene supported by epitaxial hexagonal boron nitride (h‐BN), leading to an increased interaction energy. To further demonstrate the achievement of the empirical corrections, we model, entirely from first principles, the electronic properties of graphene and graphene supported by h‐BN covered with different amounts of water (one, 10 water molecules per cell and full coverage). The effect of h‐BN on these properties turns out to be negligibly small, making it a good candidate for a substrate to grow graphene on. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Multiconfigurational ab initio methods predict that the 5Πu state as the ground state instead of the 7Δu state. Although multiconfigurational perturbation theory correctly predicts the ground state, they overestimate the bond dissociation energy (BDE). Only multireference configuration interaction method can reasonably calculate the BDE. The spin‐orbit effect on the spectroscopic constants is not significant. The results calculated by density functional theory (DFT) vary significantly depending on the selection of a DFT functional. No DFT functional gives the same energy ordering as calculated by the second‐order multiconfigurational perturbation theory (CASPT2). The old generalized gradient approximations functionals are well suited for predicting the ground state and calculating the bond length and the vibrational frequency of Os2. According to the CASPT2 calculation, the ground state of Os2 has a quadruple bond. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
18.
Density functional theory (DFT), using the most common functionals, and ab initio quantum chemistry methods are used to calculate the rotational constants and dipole moments of the astrophysically important molecules HCN, CH3CN, CH3CNH+, HCCCN, and HCCNC. As far as millimeter‐wave spectroscopy is of interest the DFT methods performed well with most functionals, giving results within ±1% of experiments for rotational constants and ±3% for dipole moments. Analyzing the results obtained with all theoretical models, it may be concluded that the Becke's three‐parameter exchange functional and the gradient‐corrected functional of Lee, Yang, and Paar (B3LYP) and Becke's three‐parameter functional with Perdew–Wang correlational functional [B3PW91/6‐31G(d, p)] give the best performances. A detailed analysis of the electron correlation effects shows that HCCCN is more stable than is HCCNC, by 1.16 eV, with important contribution arising from triple excitations. This result is also compared with those obtained with DFT methods. Despite occasional difficulties, DFT with the currently available functionals are of great utility in quickly assessing spectroscopic parameters of astrophysical interest. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

19.
We investigate basis set convergence for a series of density functional theory (DFT) functionals (both hybrid and nonhybrid) and compare to coupled‐cluster with single and double excitations and perturbative triples [CCSD(T)] benchmark calculations. The case studied is the energetics of the water oxidation reaction by an iridium‐oxo complex. Complexation energies for the reactants and products complexes as well as the transition state (TS) energy are considered. Contrary to the expectation of relatively weak basis set dependence for DFT, the basis set effects are large, for example, more than 10 kcal mol?1 difference from converged basis for the activation energy with “small” basis sets (DZ/6‐31G** for Ir/other atoms, or SVP) and still more than 6 kcal mol?1 for def2‐TZVPP/6‐31G**. Inclusion of the dispersion correction in DFT‐D3 schemes affects the energies of reactant complex (RC), TS, and product complex (PC) by almost the same amount; it significantly improves the complexation energy (the formation of RC), but has little effect on the activation energy with respect to RC. With converged basis, some pure GGAs (PBE‐D3, BP86‐D3) as well as the hybrid functional B3LYP‐D3 are very accurate compared to benchmark CCSD(T) calculations. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
In this study, 12 bound complexes were selected to construct a database for testing 15 dispersion‐improved exchange‐correlation (XC) functionals, including hybrid generalized gradient approximation (GGA), modified using the Grimme's pairwise strategy, and double hybrid XC functionals, for specifically characterizing the CO2 binding by alcoholamines. Bound complexes were selected based on the characteristics of their hydrogen bonds, dispersion, and electrostatic (particularly between the positive charge of CO2 and the lone pair of N of alcoholamines) interactions. The extrapolated binding energy from the aug‐cc‐pVTZ (ATZ) to aug‐cc‐pVQZ (AQZ) basis set at the CCSD(T)/CBS(MP2+DZ) level was used as the reference for the XC functional comparison. M06‐2X produced the optimal agreement if the optimized geometries at MP2/ATZ level were chosen for all the test bound complexes. However, M06‐L, ωB97X, and ωB97, and were preferred if the corresponding density functional theory (DFT) optimized geometries were adapted for the benchmark. Simple bimolecular reaction between CO2 and monoethanolamine simulated using polarizable continuum solvation model confirmed that ωB97, ωB97X, and ωB97XD qualitatively reproduced the energetics of MP2 level. The inconsistent performance of the tested XC functionals, observed when using MP2 or DFT optimized geometries, raised concerns regarding using the single‐point ab initio correction combined with DFT optimized geometry, particularly for determining the nucleophilic attack by alcoholamines to CO2. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号