首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The water‐exchange mechanisms of [Zn(H2O)4(L)]2+?2 H2O (L=imidazole, pyrazole, 1,2,4‐triazole, pyridine, 4‐cyanopyridine, 4‐aminopyridine, 2‐azaphosphole, 2‐azafuran, 2‐azathiophene, and 2‐azaselenophene) have been investigated by DFT calculations (RB3LYP/6‐311+G**). The results support limiting associative reaction pathways that involve the formation of six‐coordinate intermediates [Zn(H2O)5(L)]2+?H2O. The basicity of the coordinated heterocyclic ligands shows a good correlation with the activation barriers, structural parameters, and stability of the transition and intermediate states.  相似文献   

2.
3.
4.
The molecular mechanisms of the reactions between aryliden-5(4H)-oxazolone 1, and cyclopentadiene (Cp), in presence of Lewis acid (LA) catalyst to obtain the corresponding [4+2] and [4+3] cycloadducts are examined through density functional theory (DFT) calculations at the B3LYP/6-31G* level. The activation effect of LA catalyst can be reached by two ways, that is, interaction of LA either with carbonyl or carboxyl oxygen atoms of 1 to render [4+2] or [4+3] cycloadducts. The endo and exo [4+2] cycloadducts are formed through a highly asynchronous concerted mechanism associated to a Michael-type addition of Cp to the beta-conjugated position of alpha,beta-unsaturated carbonyl framework of 1. Coordination of LA catalyst to the carboxyl oxygen yields a highly functionalized compound, 3, through a domino reaction. For this process, the first reaction is a stepwise [4+3] cycloaddition which is initiated by a Friedel-Crafts-type addition of the electrophilically activated carbonyl group of 1 to Cp and subsequent cyclization of the corresponding zwitterionic intermediate to yield the corresponding [4+3] cycloadduct. The next rearrangement is the nucleophilic trapping of this cycloadduct by a second molecule of Cp to yield the final adduct 3. A new reaction pathway for the [4+3] cycloadditions emerges from the present study.  相似文献   

5.
6.
The geometries and electronic properties of tubiform [n] boron nitride clusters entrapping Li2 (Li2@BN‐cluster(n,0); n=4–8), obtained by doping BN‐cluster(n,0) with Li2 molecules, are investigated by means of DFT. The effects of tube diameter n on the dipole moment μ0, static polarizability α0, and first hyperpolarizability β0 are elucidated. Both the dipole moment and polarizability increase with increasing tube diameter, whereas variation of the static first hyperpolarizability with tube diameter is not monotonic; β0 follows the order 1612 (n=4)<3112 (n=5)<5534 (n=7)<8244 (n=6)<12 282 a.u. (n=8). In addition, the natural bond orbital (NBO) charges show that charge transfer takes place from the Li2 molecule to the BN cluster, except for BN‐cluster(8,0) with larger tube diameter. Since the large‐diameter tubular BN‐cluster(8,0) can trap the excess electrons of the Li2 molecule, Li2@BN‐cluster(8,0) can be considered to be a novel electride compound.  相似文献   

7.
The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H2O)n]+ and [K(H2O)n]+ (n = 1?4) complexes. The basis sets used are 6-31G* and LANL 1DZ (Los Alamos ECP +DZ ) at the SCF and MP 2 levels. There is an agreement for calculated structures and frequencies between the MP 2/6-31G* and MP 2/LANL 1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The five‐coordinate ruthenium N‐heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr2Me2)4H][BArF4] ( 1 ; IiPr2Me2=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene; ArF=3,5‐(CF3)2C6H3), [Ru(IEt2Me2)4H][BArF4] ( 2 ; IEt2Me2=1,3‐diethyl‐4,5‐dimethylimidazol‐2‐ylidene) and [Ru(IMe4)4H][BArF4] ( 3 ; IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) have been synthesised following reaction of [Ru(PPh3)3HCl] with 4–8 equivalents of the free carbenes at ambient temperature. Complexes 1 – 3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about δ ?41. The tetramethyl carbene complex 3 exhibits a similar chemical shift in toluene, but shows a higher frequency signal in acetonitrile arising from the solvent adduct [Ru(IMe4)4(MeCN)H][BArF4], 4 . The reactivity of 1 – 3 towards H2 and N2 depends on the size of the N‐substituent of the NHC ligand. Thus, 1 is unreactive towards both gases, 2 reacts with both H2 and N2 only at low temperature and incompletely, while 3 affords [Ru(IMe4)42‐H2)H][BArF4] ( 7 ) and [Ru(IMe4)4(N2)H][BArF4] ( 8 ) in quantitative yield at room temperature. CO shows no selectivity, reacting with 1 – 3 to give [Ru(NHC)4(CO)H][BArF4] ( 9 – 11 ). Addition of O2 to solutions of 2 and 3 leads to rapid oxidation, from which the RuIII species [Ru(NHC)4(OH)2][BArF4] and the RuIV oxo chlorido complex [Ru(IEt2Me2)4(O)Cl][BArF4] were isolated. DFT calculations reproduce the greater ability of 3 to bind small molecules and show relative binding strengths that follow the trend CO ? O2 > N2 > H2.  相似文献   

9.
10.
11.
12.
The hydrogen cyanide exchange mechanism of [Al(HCN)6]3+ has been investigated by DFT calculations (B3LYP/6‐311+G**). The calculations provide theoretical evidence that the hydrogen cyanide exchange proceeds via a limiting dissociative (D) mechanism involving a stable five‐coordinate intermediate [Al(HCN)5 · (HCN)2]3+. The activation energy for the D‐mechanism is 23.4 kcal · mol–1, which is 2.8 kcal · mol–1 lower than for the seven‐coordinate transition state [Al(HCN)7]3+? for the alternative associative (A) pathway. The difference in stability between the two intermediates [Al(HCN)5 · (HCN)2]3+ (12.1 kcal · mol–1) and [Al(HCN)7]3+ (25.7 kcal · mol–1) in comparison to [Al(HCN)6 · (HCN)]3+ is much more pronounced and further supports a limiting dissociative mechanism.  相似文献   

13.
The water exchange reaction of [Be(H2O)2(1H‐imidazole‐4,5‐dicarboxylate)] and [Be(H2O)2(1H‐imidazol‐3‐ium‐4,5‐dicarboxylate)]+ in water was studied by DFT calculations (RB3LYP/6‐311+G**) and identified as an associative interchange mechanism. The activation barriers for [Be(H2O)2(1H‐imidazole‐4,5‐dicarboxylate)] (16.6 kcal/mol) and [Be(H2O)2(1H‐imidazol‐3‐ium‐4,5‐dicarboxylate)]+ (13.8 kcal/mol) are similar to the barrier for [Be(H2O)4)]2+ and independent of the overall charge. NICS calculations show no indication that the aromaticity of the imidazole ring is affected during the water exchange process.  相似文献   

14.
15.
Density functional theory (DFT) calculations are used to explore water adsorption and activation on different α‐Ga2O3 surfaces, namely (001), (100), (110), and (012). The geometries and binding energies of molecular and dissociative adsorption are studied as a function of coverage. The simulations reveal that dissociative water adsorption on all the studied low‐index surfaces are thermodynamically favorable. Analysis of surface energies suggests that the most preferentially exposed surface is (012). The contribution of surface relaxation to the respective surface energies is significant. Calculations of electron local density of states indicate that the electron‐energy band gaps for the four investigated surfaces appears to be less related to the difference in coordinative unsaturation of the surface atoms, but rather to changes in the ionicity of the surface chemical bonds. The electrochemical computation is used to investigate the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) on α‐Ga2O3 surfaces. Our results indicate that the (100) and (110) surfaces, which have low stability, are the most favorable ones for HER and OER, respectively.  相似文献   

16.
The reaction of a monosubstituted Keggin polyoxometalate (POM) generated in situ with copper-phenanthroline complexes in excess ammonium or rubidium acetate led to the formation of the hybrid metal organic-inorganic compounds A7[Cu2(ac)2(phen)2(H2O)2][Cu3(ac)3(phen)3(H2O)3][Si2W22Cu2O78(H2O)].approximately 18 H2O (A=NH4+ (1), Rb+ (2); ac=acetate; phen=1,10-phenanthroline). These compounds are constructed from inorganic and metalorganic interpenetrated sublattices containing the novel bimolecular Keggin POM, [Si2W22Cu2O78(H2O)]12-, and Cu-ac-phen complexes, [Cu(ac)(phen)(H2O)]n n+ (n=2, 3). The packing of compound 1 can be viewed as a stacking of open-framework layers parallel to the xy plane built of hydrogen-bonded POMs, and zigzag columns of pi-stacked Cu-ac-phen complex cations running along the [111] direction. Magnetic and EPR results are discussed with respect to the crystal structure of the compounds. DFT calculations on [Cu(ac)(phen)(H2O)]n n+ cationic complexes have been performed, to check the influence of packing in the complex geometry and determine the magnetic exchange pathways.  相似文献   

17.
The electronic structure and redox properties of the highly oxidizing, isolable RuV?O complex [RuV(N4O)(O)]2+, its oxidation reactions with saturated alkanes (cyclohexane and methane) and inorganic substrates (hydrochloric acid and water), and its intermolecular coupling reaction have been examined by DFT calculations. The oxidation reactions with cyclohexane and methane proceed through hydrogen atom transfer in a transition state with a calculated free energy barrier of 10.8 and 23.8 kcal mol?1, respectively. The overall free energy activation barrier (ΔG=25.5 kcal mol?1) of oxidation of hydrochloric acid can be decomposed into two parts: the formation of [RuIII(N4O)(HOCl)]2+G=15.0 kcal mol?1) and the substitution of HOCl by a water molecule (ΔG=10.5 kcal mol?1). For water oxidation, nucleophilic attack on RuV?O by water, leading to O? O bond formation, has a free energy barrier of 24.0 kcal mol?1, the major component of which comes from the cleavage of the H? OH bond of water. Intermolecular self‐coupling of two molecules of [RuV(N4O)(O)]2+ leads to the [(N4O)RuIV? O2? RuIII(N4O)]4+ complex with a calculated free energy barrier of 12.0 kcal mol?1.  相似文献   

18.
19.
The reaction of [Co(2)(CO)(8)] with (CF(3))(3)BCO in hexane leads to the Lewis acid-base adduct [Co(2)(CO)(7)CO--B(CF(3))(3)] in high yield. When the reaction is performed in anhydrous HF solution [Co(CO)(5)][(CF(3))(3)BF] is isolated. The product contains the first example of a homoleptic metal pentacarbonyl cation with 18 valence electrons and a trigonal-bipyramidal structure. Treatment of [Co(2)(CO)(8)] or [Co(CO)(3)NO] with NO(+) salts of weakly coordinating anions results in mixed crystals containing the [Co(CO)(5)](+)/[Co(CO)(2)(NO)(2)](+) ions or pure novel [Co(CO)(2)(NO)(2)](+) salts, respectively. This is a promising route to other new metal carbonyl nitrosyl cations or even homoleptic metal nitrosyl cations. All compounds were characterized by vibrational spectroscopy and by single-crystal X-ray diffraction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号