首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been used successfully to detect phosphorylation sites in proteins. Applications may be limited by the low response of phosphopeptides compared to nonphosphorylated peptides in MALDI MS. The addition of ammonium salts to the matrix/analyte solution substantially enhances the signal for phosphopeptides. In examples shown for equimolar mixtures, the phosphorylated peptide peaks become the largest peaks in the spectrum upon ammonium ion addition. This can allow for the identification of phosphopeptides in an unfractionated proteolytic digestion mixture. Sufficient numbers of protonated phosphopeptides can be generated such that they can be subjected to postsource decay analysis, in order to confirm the number of phosphate groups present. The approach works well with the common MALDI matrices such as α-cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid, and with ammonium salts such as diammonium citrate and ammonium acetate.  相似文献   

2.
Ultraviolet matrix-assisted laser desorption/ionization mass spectrometric (UV-MALDI-MS) analysis of highly acidic, thermally labile species such as glycosaminoglycan-derived oligosaccharides is complicated by their poor ionization efficiency and tendency to fragment through the loss of sulfo groups. We have utilized a systematic approach to evaluate the effect of alkali metal counterions on the degree of fragmentation through SO3 loss from a highly sulfated model compound, sucrose octasulfate (SOS). The lithium, sodium, potassium, rubidium, and cesium salts of SOS were analyzed by UV-MALDI-time-of-flight (TOF)MS using an ionic liquid matrix, bis-1,1,3,3-tetramethylguanidinium alpha-cyano-4-hydroxycinnamate. The positive-ion and negative-ion MALDI mass spectra of five alkali metal salts of SOS were compared in terms of the degree of analyte fragmentation through the SO3 loss and the absolute intensity of a molecular ion signal. Experimental results demonstrate that the lithium, sodium, and potassium salts of SOS undergo some degree of fragmentation through the loss of SO3, whereas the fragmentation through the loss of SO3 in the rubidium and cesium salts of SOS is suppressed. A high detection sensitivity associated with the stability of sulfate half-esters was achieved for the cesium salt of SOS using positive-ion detection. Finally, the cesium salt of chondroitin sulfate A disaccharide was successfully analyzed using UV-MALDI-TOFMS.  相似文献   

3.
In this work we evaluate the influence of thermal desorber temperature on the analytical response of a swipe-based thermal desorption ion mobility spectrometer (IMS) for detection of trace explosives. IMS response for several common high explosives ranging from 0.1 ng to 100 ng was measured over a thermal desorber temperature range from 60 °C to 280 °C. Most of the explosives examined demonstrated a well-defined maximum IMS signal response at a temperature slightly below the melting point. Optimal temperatures, giving the highest IMS peak intensity, were 80 °C for trinitrotoluene (TNT), 100 °C for pentaerythritol tetranitrate (PETN), 160 °C for cyclotrimethylenetrinitramine (RDX) and 200 °C for cyclotetramethylenetetranitramine (HMX). By modifying the desorber temperature, we were able to increase cumulative IMS signal by a factor of 5 for TNT and HMX, and by a factor of 10 for RDX and PETN. Similar signal enhancements were observed for the same compounds formulated as plastic-bonded explosives (Composition 4 (C-4), Detasheet, and Semtex). In addition, mixtures of the explosives exhibited similar enhancements in analyte peak intensities. The increases in sensitivity were obtained at the expense of increased analysis times of up to 20 seconds. A slow sample heating rate as well as slower vapor-phase analyte introduction rate caused by low-temperature desorption enhanced the analytical sensitivity of individual explosives, plastic-bonded explosives, and explosives mixtures by IMS. Several possible mechanisms that can affect IMS signal response were investigated such as thermal degradation of the analytes, ionization efficiency, competitive ionization from background, and aerosol emission.  相似文献   

4.
The ammonia chemical ionization desorption spectra of N,N-dimethyl quaternary ammonium iodides in addition to high protonated molecular ion [M + H]+ intensity, show signals for an ion radical composed of N-methyl abstracted salt cation and ammonia [C + NH3? CH3]. These ions corresponding to the cation +2 show increased importance in the chemical ionization mode, using the same reagent gas. The technique of chemical ionization desorption appears suitable for the analysis of salts, and thus for the determination of the molecular weight of both anion and cation.  相似文献   

5.
A new two-component system, consisting of a matrix and an onium salt as comatrix, is described for detection of sulfo-peptides in the positive mode by matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Binary iodonium salts were superior to quaternary phosphonium salts in terms of suppression of desulfation and salt formation with the carboxyl group. Of the iodonium salts examined, bis(4-tert-butylphenyl)iodonium (BTI) hexafluorophosphate and bromide were most effective in giving intensive molecular ion signals in the form of [M(BTI)+BTI](+). The conditions optimized for O-sulfated tyrosine-containing peptides could be applicable for O-sulfated serine- and threonine-containing peptides. In the case of a phospho-peptide, a molecular ion appeared more intensively as a proton adduct than as a BTI adduct.  相似文献   

6.
The detection of phospholipids (PLs) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was demonstrated nearly a decade ago. However, its use as a conventional tool for PL analysis has been hindered by ambiguities in peak assignments caused by spectral overlaps and difficulties in the detection of some PL classes when analytes with positively charged head groups, such as sphingomyelins (SMs) and phosphatidylcholines (PCs) are present. In this work, either a strong cation-exchange resin or CsCl crystals were added directly to the PL samples to reduce spectral complexity and enhance sensitivity. The quantitative exchange resulted in virtually only protonated or Cs+ adducts. To alleviate difficulties in the detection and identification of PL classes with ionization efficiencies lower than those of SMs and PCs, improvements in the sensitivity of negative-ion mass spectra were sought. For this purpose, several neutral and basic matrices were tried. Among them, p-nitroaniline (PNA) proved to be an advantageous alternative to the use of 2,5-dihydroxybenzoic acid (DHB), the most commonly used matrix in PL analysis. Because of its lower acidity, PNA increased the relative amount of deprotonated species and improved the sensitivity of negative-ion mass spectra. It was possible to confirm peak assignments for PL classes that normally give weak signals when DHB is used. Noteworthy is the detection (in both positive and negative modes) and conclusive identification of species in natural mixtures of phosphatidylethanolamines (PEs) and PE plasmalogens (PEps). PNA allowed the identification of PEs and PEps even in mixtures containing SMs and PCs. Although some cations related to PCs and PEs overlapped in positive-ion spectra, these interferences were eliminated in the negative mode as only the deprotonated forms of PEs and PEps were detectable and those of SMs and PCs were absent owing to their neutrality.  相似文献   

7.
Li XA  Zhou DM  Xu JJ  Chen HY 《Talanta》2008,75(1):157-162
In this work, chloride, chlorate and perchlorate are fast separated on PDMS microchip and detected via in-channel indirect amperometric detection mode. With PDMS/PDMS microchip treated by oxygen plasma, anions chloride (Cl-), chlorate (ClO3-), and perchlorate (ClO4-) are separated within 35s. Some parameters including buffer salt concentration, buffer pH, separation voltage and detection potential are investigated in detail. The separation conditions using 15 mM (pH 6.12) of 2-(N-morpholino)ethanesulfonic acid (MES)+L-histidine (L-His) as running buffer, -2000 V as separation voltage and 0.7 V as detection potential are optimized. Under this condition, the detection limits of Cl-, ClO3-, and ClO4- are 1.9, 3.6, and 2.8 microM, respectively.  相似文献   

8.
Application of matrix‐assisted laser‐desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3‐hydroxypicolinic acid (3‐HPA) and α‐cyano‐4‐hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3‐HPA and CCA were found to be hot matrices, and 3‐HPA not as good as CCA and 2,5‐dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3‐HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive‐ion and negative‐ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (?80 Da) and phosphoric acid (?98 Da) from the phosphorylated‐residue‐containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for ‘sweet’ spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in‐solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass‐to‐charge values and LIFT TOF‐TOF spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A new thermal ionization source for use with a quadrupole mass spectrometer has been designed and characterized. The new source provides significant advantages over the previously reported prototype source and traditional filament-type thermal ionization sources. The operational interface between the source and the quadrupole mass spectrometer has been redesigned. A vacuum interlock, a translational stage, and an adjustable insertion probe are added to improve the source performance. With these modifications, the source is easier to operate while maximizing sample throughput. In this work, the performance of the newly developed source is examined. The ionization efficiencies are measured with a quadrupole mass spectrometer. The efficiency values obtained with this system are comparable to those obtained from a large scale isotope separator. The relationships among the ionization potential, vapor pressure, and measured ionization efficiency results are discussed. The crucible lifetime has been quantitatively estimated by measuring the crucible sputtering rate. Diagnostic studies of the new source show that the crucible position is a crucial parameter for sensitivity and performance. Stability tests demonstrate that the source can be run several weeks at a fixed emission current without significant degradation.  相似文献   

10.
Salts with low melting points, also termed room-temperature ionic liquids, can be used as matrices in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). They have great vacuum stability, and can dissolve polar and apolar solutes including carbohydrates, biological oligomers and proteins. The ionic liquids give much more homogeneous sample solutions compared with solid matrices. We demonstrate the usefulness of using ionic matrices to determine the molecular weight of DNA oligomers by direct TOF mass spectrometric analysis. Three oligonucleotides were tested, (d(pT)(10), d(pC)(11), and d(pC)(12)), with several ionic matrices synthesized from different bases associated to two acids (3-hydroxypicolinic acid and 2,5-dihydroxybenzoic acid). The results obtained show that the best ionic matrices enhance the ion peak intensity of the oligonucleotides with respect to conventional molecular matrices under our experimental conditions. In one case, an ionic matrix provided a signal-to-noise ratio ten times higher than the corresponding molecular matrix. Several of the tested ionic matrices were liquids. However, all working ionic matrices were solids.  相似文献   

11.
Two inline matrix diversion methods were developed for the sensitive analysis of perchlorate in a matrix comprising up to 1000 mg l−1 of chloride, sulfate and bicarbonate ions using suppressed ion chromatography and conductivity detection. The first method used a cryptand C1 concentrator column, which exhibited a high selectivity for perchlorate ion over the other matrix anions. After retaining the sample anions in a concentrator column derivatized with a crytpand phase, a rinse step was implemented with a weak base to divert the matrix ions to waste while selectively retaining perchlorate in the concentrator column for subsequent analysis. The analysis was done using a 2 mm IonPac® AS16 or 2 mm IonPac® AS20 separator column. The second method was a two-dimensional matrix diversion method with a focus on improving the detection sensitivity. The first dimension was used to achieve some resolution of the matrix ions from perchlorate. The perchlorate ion was then diverted into a concentrator column for subsequent analysis in the second dimension. By pursuing analysis using a 4 mm IonPac® AS16 or IonPac® AS20 column in the first dimension and subsequently pursuing analysis using a 2 mm IonPac® AS16 or IonPac® AS20 column format, excellent sensitivities were achieved when the first and second dimensions were operated at the same linear flow velocity (cm min−1). While sensitive detection of perchlorate in the low μg l−1 regime was achieved by the above methods in the presence of matrix ions, superior recovery for perchlorate was demonstrated under a variety of matrix concentrations by the second method.  相似文献   

12.
Most pesticides, herbicides and other plant treatment agents are applied to the crop surface. Direct mass spectrometric methods, such as desorption electrospray ionization (DESI), offer new ways to analyze plant samples directly and rapidly. A strategy for the development and optimization of a DESI method for the direct determination of chemicals on complex surfaces is described. Chlorpropham (CP) was applied to potato surfaces as an example for a crop protection agent and analyzed using a self‐made DESI source. Aspects such as instrument selectivity, sensitivity and reproducibility were investigated. The MS4 fragmentation pattern of CP was analyzed to achieve the necessary detection selectivity, and is discussed in detail. Similar fragmentation was found in the ESI and DESI mass spectra, indicating that the mechanisms of ESI and DESI are closely related. A DESI method for semi‐quantification of CP on potatoes was developed. Detection limits of 6.5 µg/kg were found using MS/MS. The reproducibility, in the range of 12% (signal variation), appears to be sufficient for semi‐quantitative measurements. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Reactive desorption electrospray ionization (reactive DESI) is demonstrated to be a rapid and sensitive method for the direct detection of alkyl methylphosphonic acids, the hydrolysis products and metabolites of the chemical warfare (CW) agents VX (S-2-diisopropylaminoethyl-O-ethyl methylphosphonothiolate) and GB (sarin, isopropylmethyl phosphonofluoridate). Rapid and sensitive detection of these compounds is readily achieved by performing DESI from a solid surface; detection specificity is enhanced by implementation of a heterogeneous ion/molecule reaction using boric acid in the spray solvent. The reagent ion H(2)BO(3) (-) generated in the spray readily reacts with condensed-phase alkyl MPA to form anionic adducts. The specificity of this chemical reaction, together with the characteristic fragmentation patterns of the reaction products, supplies a highly discriminatory detection method for methylphosphonic acid (MPA), ethylphosphonic acid (EMPA) and isopropyl methylphosphonic acid (IMPA) in complex matrices.  相似文献   

14.
15.
16.
This article describes the use of 2,3-naphthalenedicarboxaldehyde (NDA) as a selective probe for the determination of homocysteine (HCys) via fluorescence measurement and laser desorption/ionization mass spectrometry (LDI-MS). The derivatives of three aminothiols-HCys, glutathione (GSH), and gamma-glutamylcysteine (gamma-Glu-Cys)-with NDA under alkaline conditions possess different fluorescence emission characteristics, which allow us to identify them from amines, amino acids, and thiols. By selecting appropriate pH and excitation wavelengths, the limits of detection (LODs) at a signal-to-noise ratio of 3 were 5.2, 1.4 and 16 nM for HCys, GSH and gamma-Glu-Cys, respectively. Additionally, strong UV absorption of the NDA-HCys derivative was further observed at 331 nm; it could be directly detected by LDI-MS with a 337-nm nitrogen laser. Selective detection of HCys has been achieved by conducting the LDI-MS of the NDA-HCys derivative, which was found at m/z 406.9. The lowest detectable concentration of the NDA-HCys derivative in this approach was 500 nM. Quantitative determination of HCys in urine samples was accomplished by LDI-MS. Also, a calibration curve was created from plasma samples spiked with standard HCys (20-100 microM). The experimental results suggest that our proposed methods have great potential in clinical diagnosis and metabolomics application.  相似文献   

17.
This work is the first to demonstrate the direct generation of large silver cluster ions through laser desorption/ionization of silver-containing salts without the assistance of a molecular beam. Both positively and negatively charged silver clusters up to 100-mer have been produced using this approach. It was observed that the silver cluster distributions produced by this method are similar to those produced using the beam-based approaches, namely there are two special features in the mass spectra. The first is that the cluster intensity distribution displays an odd–even alternation pattern. The second is a steep decrease of ion intensities after some clusters called ‘magic numbers'.  相似文献   

18.
Cysteine sulfonic acid-containing peptides, being typical acidic peptides, exhibit low response in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. In this study, matrix conditions and the effect of diammonium hydrogencitrate (DAHC) as additive were investigated for ionization of cysteine sulfonic acid-containing peptides in MALDI. A matrix-free ionization method, desorption/ionization on porous silicon (DIOS), was also utilized to evaluate the effect of DAHC. When equimolar three-component mixtures of peptides carrying free cysteine, cysteine sulfonic acid, and carbamidomethyl cysteine were measured by MALDI using a common matrix, alpha-cyano-4-hydroxycinnamic acid (CHCA), no signal corresponding to cysteine sulfonic acid-containing peptide could be observed in the mass spectrum. However, by addition of DAHC to CHCA, the peaks of cysteine sulfonic acid-containing peptides were successfully observed, as well as when using 2,4,6-trihydroxyacetophenone (THAP) and 2,6-dihydroxyacetophenone with DAHC. In the DIOS mass spectra of these analytes, the use of DAHC also enhanced the peak intensity of the cysteine sulfonic acid-containing peptides. On the basis of studies with these model peptides, tryptic digests of oxidized peroxiredoxin 6 were examined as a complex peptide mixture by MALDI and DIOS. In MALDI, the peaks of cysteine sulfonic acid-containing peptides were observed when using THAP/DAHC as the matrix, but this was not so with CHCA. In DIOS, the signal from cysteine sulfonic acid-containing peptides was suppressed; however, the use of DAHC significantly enhanced the signal intensity with an increase in the number of observed peptides and increased signal-to-noise ratio in the DIOS spectra. The results show that DAHC in the matrix or on the DIOS chip decreases discrimination and suppression effects in addition to suppressing alkali-adduct ions, which leads to a beneficial effect on protonation of peptides containing cysteine sulfonic acid.  相似文献   

19.
Derivatization of tryptic peptides using an Ettan CAF matrix-assisted laser desorption/ionization (MALDI) sequencing kit in combination with MALDI-post source decay (PSD) is a fast, accurate and convenient way to obtain de novo or confirmative peptide sequencing data. CAF (chemically assisted fragmentation) is based on solid-phase derivatization using a new class of water stable sulfonation agents, which strongly improves PSD analysis and simplifies the interpretation of acquired spectra. The derivatization is performed on solid supports, ZipTip(microC18, limiting the maximum peptide amount to 5 microg. By performing the derivatization in solution enabled the labeling of tryptic peptides derived from 100 microg of protein. To increase the number of peptides that could be sequenced, derivatized peptides were purified using multidimensional liquid chromatography (MDLC) prior to MALDI sequencing. Following the first dimension strong cation exchange (SCX) chromatography step, modified peptides were separated using reversed-phase chromatography (RPC). During the SCX clean up step, positively charged peptides are retained on the column while properly CAF-derivatized peptides (uncharged) are not. A moderately complex tryptic digest, prepared from six different proteins of equimolar amounts, was CAF-derivatized and purified by MDLC. Fractions from the second dimension nano RPC step were automatically sampled and on-line dispensed to MALDI sample plates and analyzed using MALDI mass spectrometry fragmentation techniques. All proteins in the derivatized protein mixture digest were readily identified using MALDI-PSD or MALDI tandem mass spectrometry (MS/MS). More than 40 peptides were unambiguously sequenced, representing a seven-fold increase in the number of sequenced peptides in comparison to when the CAF-derivatized protein mix digest was analyzed directly (no MDLC-separation) using MALDI-PSD. In conclusion, MDLC purification of CAF-derivatized peptides significantly increases the success rate for de novo and confirmative sequencing using various MALDI fragmentation techniques. This new approach is not only applicable to single protein digests but also to more complex digests and could, thus, be an alternative to electrospray ionization MS/MS for peptide sequencing.  相似文献   

20.
Two peptide quantification strategies, the isobaric tags for relative or absolute quantitation (iTRAQ) labeling methodology and a metal-chelate labeling approach, were compared using matrix-assisted laser desorption/ionization-TOF/TOF MS and MS/MS analysis. Amino- and cysteine-directed labeling using the rare earth metal chelator 1,4,7,10-tetraazacyclododecane-N,N′,N″,N″′-tetraacetic acid (DOTA) were applied for relative quantification of single peptides and a six-protein mixture. For analyte ratios close to one, iTRAQ and amino-directed DOTA labeling delivered overall comparable results regarding accuracy and reproducibility. In contrast, the MS-based quantification via amino-directed lanthanide-DOTA tags was more accurate for analyte ratios ≥5 and offered an extended dynamic range of three orders of magnitude. Our results show that the amino-directed DOTA labeling is an alternative relative quantification tool offering advantages like flexible multiplexing possibilities and, in particular, large dynamic ranges, which should be useful in sophisticated, targeted issues, where the accurate determination of extremely different protein or peptide concentration becomes relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号