首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Weak intermolecular interactions in organic semiconducting molecular crystals play an important role in determining molecular packing and electronic properties. Single crystals of metal‐free and metal phthalocyanines were synthesized to investigate how the coordination of the central metal atom affects their molecular packing and resultant electronic properties. Single‐crystal field‐effect transistors were made and showed a hole mobility order of ZnPc>MnPc>FePc>CoPc>CuPc>H2Pc>NiPc. Density functional theory (DFT) and 1D polaron transport theory reach a good agreement in reproducing the experimentally measured trend for hole mobility. Additional detail analysis at the DFT level suggests the metal atom coordination into H2Pc planes can tune the hole mobility via adjusting the intermolecular distances along the shortest axis with closest parallel π stackings.  相似文献   

2.
The preference of π‐stacking interactions for parallel‐displaced (PD) and twisted (TW) conformations over the fully eclipsed sandwich (S) in small π‐stacked dimers of benzene, pyridine, pyrimidine, 1,3,5‐trifluorobenzene, and hexafluorobenzene are examined in terms of enhancement of the inter‐ring density through mixing of the monomer orbitals (MOs). PD and/or TW conformations are consistent with a non‐zero “stack bond order” (SBO), defined in analogy to the bond order of conventional MO theory, as the difference in the occupation of bonding and antibonding π‐type dimer MOs. In the S conformation, the equal number of bonding and antibonding MOs cancel overall stack bonding character between the monomers for an SBO of zero and an overall repulsive interaction. PD from the S shifts the character of at least one antibonding combination of monomer π‐type MOs with nodes perpendicular to the coordinate for PD to bonding, leading to an attractive nonzero SBO. The inter‐ring density measured through the Wiberg bond index analysis shows an enhancement at the PD conformations consistent with greater interpenetration of the monomer densities. This intuitive bonding model for π‐stacking interactions is complementary to highly accurate calculations of π‐stacking energies and allows a predictive understanding of relative stability using cheaper quantum chemical methods.  相似文献   

3.
A series of newly synthesized dicyanoplatinum(II) 2,2′‐bipyridine complexes exhibits self‐assembly properties in solution after the incorporation of the l ‐valine amino units appended with various hydrophobic motifs. These l ‐valine‐derived substituents were found to have critical control over the aggregation behaviors of the complexes in the solution state. On one hand, one of the complexes was found to exhibit interesting circularly polarized luminescence (CPL) signals at low temperature due to the formation of chiral spherical aggregates in the temperature‐dependent studies. On the other hand, systematic transformation from less uniform aggregates to well‐defined fibrous and rod‐like structures via Pt???Pt and π–π stacking interactions has also been observed in the mixed‐solvent studies. These changes were monitored by UV/Vis absorption, emission, circular dichroism (CD), and CPL spectroscopies, and morphologies were studied by electron microscopy.  相似文献   

4.
High quantum chemical calculations have been performed for binary complexes of MCN···ZX3 (M = Cu, Ag, Au; Z = B, Al; X = H, F) and C2H4···AlX3. The strength of triel bonding depends on the nature of triel and coin metal atoms as well as the F substituents and electron donors. The molecular electrostatic potential (MEP) analysis confirms a σ‐hole at the M‐C bond end of MCN, engaging in a regium bond with C2H4 in an increasing sequence of AgCN < CuCN < AuCN. The complex C2(CN)4···AuCN is unstable in view of MEPs, but a big attractive interaction energy (?38 kcal/mol) is produced when both molecules approach, which is mainly caused by polarization including orbital interactions. Both types of interactions are strengthened in ternary complex of C2H4···MCN···ZX3 but are weakened in NCAu···C2H4···AlX3 and C2(CN)4···AuCN···ZH3. It is found that the variation from synergistic to diminutive effects can be modulated by four CN groups in C2(CN)4. Interestingly, the binding distances of both interactions have an unexpected change. The cooperativity of both interactions has been explained with MEP and charge transfer. When C2H4 binds with AlX3 or AuCN, its π electron density is greatly decreased and even its MEP becomes positive, but it is still able to participate in a regium bond or a triel bond.  相似文献   

5.
Naphthalene diimides have received much attention due to their high electron affinities, high electron mobility, and good thermal and oxidative stability, therefore making them promising candidates for a variety of organic electronic applications. However, π‐extended naphthalene diimides with lower HOMO‐LUMO gaps and higher stability have only been developed recently because of the synthetic difficulties. This account describes recent developments in the structures, synthesis, properties, and applications of π‐extended naphthalene diimides, including pure‐carbon and heterocyclic acene diimides, from our research group.  相似文献   

6.
The peptide N‐benzyloxycarbonyl‐L‐valyl‐L‐tyrosine methyl ester or NCbz‐Val‐Tyr‐OMe (where NCbz is N‐benzyloxycarbonyl and OMe indicates the methyl ester), C23H28N2O6, has an extended backbone conformation. The aromatic rings of the Tyr residue and the NCbz group are involved in various attractive intra‐ and intermolecular aromatic π–π interactions which stabilize the conformation and packing in the crystal structure, in addition to N—H...O and O—H...O hydrogen bonds. The aromatic π–π interactions include parallel‐displaced, perpendicular T‐shaped, perpendicular L‐shaped and inclined orientations.  相似文献   

7.
Weak intermolecular interaction in organic semiconducting molecular crystals plays an important role in molecular packing and electronic properties. Here, four five‐ring‐fused isomers were rationally designed and synthesized to investigate the isomeric influence of linear and angular shapes in affecting their molecular packing and resultant electronic properties. Single‐crystal field‐effect transistors showed mobility order of 5,7‐ICZ (3.61 cm2 V?1 s?1) >5,11‐ICZ (0.55 cm2 V?1 s?1) >11,12‐ICZ (ca. 10?5 cm2 V?1 s?1) and 5,12‐ICZ (ca. 10?6 cm2 V?1 s?1). Theoretical calculations based on density functional theory (DFT) and polaron transport model revealed that 5,7‐ICZ can reach higher mobilities than the others thanks to relatively higher hole transfer integral that links to stronger intermolecular interaction due to the presence of multiple NH???π and CH???π(py) interactions with energy close to common NH???N hydrogen bonds, as well as overall lower hole‐vibrational coupling owing to the absence of coupling of holes to low frequency modes due to better π conjugation.  相似文献   

8.
This article analyzes the interplay between lone pair–π (lp–π) or anion–π interactions and halogen‐bonding interactions. Interesting cooperativity effects are observed when lp/anion–π and halogen‐bonding interactions coexist in the same complex, and they are found even in systems in which the distance between the anion and halogen‐bond donor molecule is longer than 9 Å. These effects are studied theoretically in terms of energetic and geometric features of the complexes, which are computed by ab initio methods. Bader′s theory of “atoms in molecules” is used to characterize the interactions and to analyze their strengthening or weakening depending upon the variation of charge density at critical points. The physical nature of the interactions and cooperativity effects are studied by means of molecular interaction potential with polarization partition scheme. By taking advantage of all aforementioned computational methods, the present study examines how these interactions mutually influence each other. Additionally, experimental evidence for such interactions is obtained from the Cambridge Structural Database (CSD).  相似文献   

9.
Ultralong organic phosphorescence (UOP) based on metal‐free porous materials is rarely reported owing to rapid nonradiative transition under ambient conditions. In this study, hydrogen‐bonded organic aromatic frameworks (HOAFs) with different pore sizes were constructed through strong intralayer π–π interactions to enable ultralong phosphorescence in metal‐free porous materials under ambient conditions for the first time. Impressively, yellow UOP with a lifetime of 79.8 ms observed for PhTCz‐1 lasted for several seconds upon ceasing the excitation. For PhTCz‐2 and PhTCz‐3, on account of oxygen‐dependent phosphorescence quenching, UOP could only be visualized in N2, thus demonstrating the potential of phosphorescent porous materials for oxygen sensing. This result not only outlines a principle for the design of new HOFs with high thermal stability, but also expands the scope of metal‐free luminescent materials with the property of UOP.  相似文献   

10.
The field of organic thin films and devices is progressing at an extremely rapid pace. Organic–metal and organic–organic interfaces play crucial roles in charge injection into, and transport through, these devices. Their electronic structure, chemical properties, and electrical behavior must be fully characterized and understood if the engineering and control of organic devices are to reach the levels obtained for inorganic semiconductor devices. This article provides an extensive, although admittedly nonexhaustive, review of experimental work done in our group on the electronic structure and electrical properties of interfaces between films of π‐conjugated molecular films and metals. It introduces several mechanisms currently believed to affect the formation of metal–organic interface barriers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2529–2548, 2003  相似文献   

11.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

12.
Noncovalent interactions involving aromatic rings, such as π‐stacking and CH/π interactions, are central to many areas of modern chemistry. However, recent studies proved that aromaticity is not required for stacking interactions, since similar interaction energies were computed for several aromatic and aliphatic dimers. Herein, the nature and origin of π/π, σ/σ, and σ/π dispersion interactions has been investigated by using dispersion‐corrected density functional theory, energy decomposition analysis, and the recently developed noncovalent interaction (NCI) method. Our analysis shows that π/π and σ/σ stacking interactions are equally important for the benzene and cyclohexane dimers, explaining why both compounds have similar boiling points. Also, similar dispersion forces are found in the benzene???methane and cyclohexane???methane complexes. However, for systems larger than naphthalene, there are enhanced stacking interactions in the aromatic dimers adopting a parallel‐displaced configuration compared to the analogous saturated systems. Although dispersion plays a decisive role in stabilizing all the complexes, the origin of the π/π, σ/σ, and σ/π interactions is different. The NCI method reveals that the dispersion interactions between the hydrogen atoms are responsible for the surprisingly strong aliphatic interactions. Moreover, whereas σ/σ and σ/π interactions are local, the π/π stacking are inherently delocalized, which give rise to a non‐additive effect. These new types of dispersion interactions between saturated groups can be exploited in the rational design of novel carbon materials.  相似文献   

13.
To explore the operational role of noncovalent interactions in supramolecular architectures with designed topologies, a series of solid‐state structures of 2‐ and 4‐formylphenyl 4‐substituted benzenesulfonates was investigated. The compounds are 2‐formylphenyl 4‐methylbenzenesulfonate, C14H12O4S, 3a , 2‐formylphenyl 4‐chlorobenzenesulfonate, C13H9ClO4S, 3b , 2‐formylphenyl 4‐bromobenzenesulfonate, C13H9BrO4S, 3c , 4‐formylphenyl 4‐methylbenzenesulfonate, C14H12O4S, 4a , 4‐formylphenyl 4‐chlorobenzenesulfonate, 4b , C13H9ClO4S, and 4‐formylphenyl 4‐bromobenzenesulfonate, C13H9BrO4S, 4c . The title compounds were synthesized under basic conditions from salicylaldehyde/4‐hydroxybenzaldehydes and various aryl sulfonyl chlorides. Remarkably, halogen‐bonding interactions are found to be important to rationalize the solid‐state crystal structures. In particular, the formation of O…X (X = Cl and Br) and type I XX halogen‐bonding interactions have been analyzed by means of density functional theory (DFT) calculations and characterized using Bader's theory of `atoms in molecules' and molecular electrostatic potential (MEP) surfaces, confirming the relevance and stabilizing nature of these interactions. They have been compared to antiparallel π‐stacking interactions that are formed between the arylsulfonates.  相似文献   

14.
A silacyclophane molecule with two disilanyl pillars and two oligoarylene units was synthesized. The molecule was packed in a single crystal with a new motif interfusing π‐stack and herringbone packing structures. The hole transporting ability of the solid was revealed by using the flash‐photolysis time‐resolved microwave conductivity method. The molecular structure, albeit a singly‐bonded arylene macrocycle, was rigidified by the unique packing array, which favorably contributed to the hole transporting ability of the solid via the small reorganization energy through the charge transport.  相似文献   

15.
Thermolysis of [Cp*Ru(PPh2(CH2)PPh2)BH2(L2)] 1 (Cp*=η5‐C5Me5; L=C7H4NS2), with terminal alkynes led to the formation of η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)B{R‐C=CH2}(L)2] ( 2 a – c ) and η2‐vinylborane complexes [Cp*Ru(R‐C=CH2)BH(L)2] ( 3 a – c ) ( 2 a , 3 a : R=Ph; 2 b , 3 b : R=COOCH3; 2 c , 3 c : R=p‐CH3‐C6H4; L=C7H4NS2) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a – c are linked by a unique η4‐interaction. Conversions of 1 into 3 a – c proceed through the formation of intermediates 2 a – c . Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ‐borane complex [Cp*RuCO(μ‐H)BH2L] 4 (L=C7H4NS2) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)BH{R‐C=CH2}(L)] 5 and [Cp*Ru(μ‐H)BH{HC=CH‐R}(L)] 6 (R=COOCH3; L=C7H4NS2) by Markovnikov and anti‐Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η4‐σ,π‐borataallyl complex [Cp*Ru(μ‐H)BH{R‐C=CH‐R}(L)] 7 (R=COOCH3; L=C7H4NS2). An agostic interaction was also found to be present in 2 a – c and 5 – 7 , which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, 1H, 11B, 13C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b , 3 a – c and 5 – 7 . DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.  相似文献   

16.
This study probes the nature of noncovalent interactions, such as cation–π, metal ion–lone pair (M–LP), hydrogen bonding (HB), charge‐assisted hydrogen bonding (CAHB), and π–π interactions, using energy decomposition schemes—density functional theory (DFT)–symmetry‐adapted perturbation theory and reduced variational space. Among cation–π complexes, the polarization and electrostatic components are the major contributors to the interaction energy (IE) for metal ion–π complexes, while for onium ion–π complexes ( , , , and ) the dispersion component is prominent. For M–LP complexes, the electrostatic component contributes more to the IE except the dicationic metal ion complexes with H2S and PH3 where the polarization component dominates. Although electrostatic component dominates for the HB and CAHB complexes, dispersion is predominant in π–π complexes.Copyright © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Complexes formed by guanidinium cation and a pair of aromatic molecules among benzene, phenol, or indole have been computationally studied to determine the characteristics of the cation···π interaction in ternary systems modeling amino acid side chains. Guanidinium coordinates to the aromatic units preferentially in the following order: indole, phenol, and benzene. Complexes containing two different aromatic units show an intermediate behavior between that observed for complexes with only one kind of aromatic unit. Most stable structures correspond to doubly‐T shaped arrangements with the two aromatic units coordinating guanidinium by its NH2 groups. Other structures with only one aromatic unit coordinated to guanidinium, such as T‐shaped or parallel‐stacked ones, are less favorable but still showing significant stabilization. In indole and phenol complexes, the formation of hydrogen bonds between the aromatic molecules introduces extra stabilization in T‐shaped structures. Three body effects are small and repulsive in doubly T‐shaped minima. Only when hydrogen bonds involving the aromatic molecules are formed in T‐shaped structures a cooperative effect can be observed. In most complexes the interaction is controlled by electrostatics, with induction and dispersion also contributing significantly depending on the nature and orientation of the aromatic species forming the complex. Although the stability in these systems is mainly controlled by the intensity of the interaction between guanidinium and the aromatic molecules coordinated to it, interactions between aromatic molecules can modulate the characteristics of the complex, especially when hydrogen bonds are formed. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Homogeneous π‐stacking dimers of phenalenyl and its derivatives have gained tremendous interest as components of conducting organic materials. For the first time, we investigate theoretically heterogeneous phenalenyl π‐dimers. Key parameters, including charge transfer, interaction energy, singly occupied molecular orbital (SOMO) energy, and spin density, are studied with the help of density functional theory. We find that the amount of charge transfer between the two monomers in phenalenyl π‐dimers correlates with the difference in the SOMO energies of the constituent monomers, where the SOMO energy plays the role of a monomer (group) electronegativity index. Charge transfer plays an important role in stabilizing the heterodimers while maintaining a significant diradicaloid character. For five heterodimers the interaction energy is found to be as large as ?30 to ?50 kcal mol?1. The presented correlation between the monomer SOMO energy levels and their stability can provide a simple predictive tool to design new highly stable π‐stacking heterodimers.  相似文献   

19.
The structural and electronic consequences of π–π and C?H/π interactions in two alkoxy‐substituted 1,8‐bis‐ ((propyloxyphenyl)ethynyl)naphthalenes are explored by using X‐ray crystallography and electronic structure computations. The crystal structure of analogue 4 , bearing an alkoxy side chain in the 4‐position of each of the phenyl rings, adopts a π‐stacked geometry, whereas analogue 8 , bearing alkoxy groups at both the 2‐ and the 5‐positions of each ring, has a geometry in which the rings are splayed away from a π‐stacked arrangement. Symmetry‐adapted perturbation theory analysis was performed on the two analogues to evaluate the interactions between the phenylethynyl arms in each molecule in terms of electrostatic, steric, polarization, and London dispersion components. The computations support the expectation that the π‐stacked geometry of the alkoxyphenyl units in 4 is simply a consequence of maximizing π–π interactions. However, the splayed geometry of 8 results from a more subtle competition between different noncovalent interactions: this geometry provides a favorable anti‐alignment of C?O bond dipoles, and two C?H/π interactions in which hydrogen atoms of the alkyl side chains interact favorably with the π electrons of the other phenyl ring. These favorable interactions overcome competing π–π interactions to give rise to a geometry in which the phenylethynyl substituents are in an offset, unstacked arrangement.  相似文献   

20.
Noncovalent halogen/π interactions of FCl with substituted benzenes have been investigated using ab initio calculations. It was shown that the predicted maximum interaction energy gap between the substituted and unsubstituted systems amounts to 1.14 kcal/mol, and therefore substituents on benzene have a pronounced effect on the strength of halogen/π interactions. While the presence of electron‐donating groups (NH2, CH3, and OH) on benzene enhances the interaction energy appreciably, an opposite effect is observed for electron‐accepting groups (NO2, CN, Br, Cl, and F). The large gain of the attraction by electron correlation illustrates that the stabilities of the systems considered arise primarily from the dispersion interaction. Beside the dispersion interaction, the charge‐transfer interaction also plays an important role in halogen/π interactions, as a charge density analysis suggested. To provide more insight into the nature of halogen/π interactions, topological analysis of the electron density distribution and properties of bond critical points were determined in terms of the atoms in molecules (AIM) theory. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号