首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对某一典型含氧煤层气气源,构建了适用于小型液化装置的丙烷预冷氮-甲烷膨胀液化精馏工艺,并采用Aspen Plus对该流程进行建模及分析。以流程比功耗、甲烷回收率为评价指标,分别研究了制冷剂高压压力PN2和低压压力PN7对流程比功耗的影响。结果表明,在PN2为3.8MPa,P_(N7)为0.3MPa时,比功耗为0.513k Wh·Nm^3,甲烷回收率为93.42%,LNG产品纯度接近100%。结合爆炸极限计算表明,含氧煤层气在压缩、冷却、液化及节流过程中,甲烷浓度均高于爆炸上限,操作安全性较高,而精馏塔顶部甲烷浓度变化会穿越爆炸上下限区间,基于此,采用原料气低压初脱氧的方式来控制精馏塔顶部氧气含量。分析结果表明,对当粗脱氧后进入压缩机的煤层气含氧量低于2.4mol%时,流程操作安全可靠。  相似文献   

2.
新疆、陕西、山西等我国很多地区都拥有丰富的煤层气资源,高效的低温液化技术能够显著提高我国煤层气资源的利用率。基于克劳特循环建立了煤层气液化流程,分析了分流膨胀气比例、压缩机出口压力对系统性能参数的影响。结果表明:通过选取合适的分流气比例可使得液化系统性能最优;煤层气中氮含量不会改变上述规律,而氮含量的提升会降低系统性能。进而针对克劳特液化循环液化率低的缺点,提出了用膨胀机代替部分节流阀并且置于低温换热器前的新循环。研究发现在压缩机出口压力低于4 MPa时,低压态新循环的系统性能参数要优于克劳特循环。在系统压缩后压力为3.0 MPa时,低压态新循环的液化率比克劳特循环高25.3%,单位液化功耗降低3.8%;在压缩机出口压力高于4.0 MPa时,高压态新循环的系统性能参数要优于克劳特循环;在压力为5.0 MPa时,高压态新循环液化率高3.33%,单位液化功耗低3.66%。  相似文献   

3.
由于国际上严格限定船舶硫排放新规即将实施,液化天然气(LNG)动力船舶的发展迎来重大机遇。但甲烷本身是一种温室气体,LNG动力船储罐以及系统其他部件产生的闪蒸气(BOG)不应直接向大气中排放。针对上述情况,结合供气系统实例,提出一种处理LNG动力船BOG的方案——利用LNG自身外输冷能结合氮膨胀循环进行BOG再液化,并采用ASPENHYSYS对整个BOG处理流程进行模拟。结果表明,该再液化流程对储罐内压力与LNG组分有很大的响应,储罐压力越大,甲烷含量越少,比功耗相对也越大;同时BOG液化率也随着储罐压力的升高而不断减小,并且甲烷含量越低,液化率下降越快。经过对比,对进入换热器前的BOG进行预冷能有效降低能耗,并且本再液化流程从功耗方面明显优于其他船用氮膨胀再液化循环。  相似文献   

4.
赵举  陈曦 《低温与超导》2012,(12):24-28
针对低压天然气特点,设计了3套天然气闭式膨胀液化流程,选择PR(Peng-Robinson)方程进行混合物的相平衡计算,采用化工模拟软件PRO/Ⅱ进行了模拟计算;分析比较了不同液化流程的关键热力学参数,并进行了关键设备的可行性分析。结果表明:丙烷预冷双级天然气膨胀液化流程的比功耗比无预冷单级天然气膨胀液化流程、无预冷双级天然气膨胀液化流程低,液化率高,而且设备均可实现。综合分析结果,选用了丙烷预冷双级天然气膨胀液化流程。并指出天然气节流前温度越低,其液化率越高,比功耗越小。天然气膨胀比越高,液化率越高。  相似文献   

5.
为了简化小型天然气液化流程中的制冷装置,增加产品的收益率,设计了一种利用液氮冷能且带精馏的天然气液化流程,在得到液化天然气(LNG)的同时得到液化石油气(LPG)。采用HYSYS软件对流程进行模拟,选取P-R方程计算天然气气液相平衡特性,以生产单位质量的LNG耗功最小为目标函数进行优化,得到了关键节点参数,主要分析了塔内工作状况和换热器管路的热负荷分布情况。结果表明:塔的操作压力对产品纯度影响很大,换热器过大的温差和负荷造成了主要的火用损失,LNG回收率大于90%。  相似文献   

6.
针对LNG-FPSO装置区别于陆上LNG工厂的关键技术难点,以我国南海海域的某油田伴生气源为研究目标,对FLNG装置液化工艺方案开展优化和分析,提出了一套具有自主知识产权的CO2跨临界预冷循环氮膨胀FLNG液化及NGL回收工艺流程。对影响该工艺流程性能的关键参数进行优化,分析该工艺对于LNG-FPSO装置的适应性。结果表明:CO2跨临界预冷循环过程,当二氧化碳经两级压缩后压力取2.5MPa,再经膨胀机膨胀降压后压力在0.185MPa左右,氮膨胀循环压缩机出口压力取2.2MPa,双级氮膨胀后压力取0.14MPa,单列总功耗为2.851×103k W,液化率为98%,比功耗为0.3421 k W·h/m3。该工艺安全性高、流程简单、设备布置紧凑、便于模块化、经济性较好,NGL回收引入TDWC(顶部分离的间壁式精馏塔),将两塔合并为一塔,简化了设备,具有良好的海上适应性。  相似文献   

7.
小型天然气液化装置具有结构紧凑、投资少、操作简单等优点。采用化工软件HYSYS对氮气膨胀流程、丙烷预冷氮气膨胀流程和丙烷预冷N2-CH4膨胀流程进行模拟,以比功耗为目标函数,对液化流程的关键参数以及制冷剂组分进行优化,发现由于N2和CH4的比热容Cp、绝热指数k不同,使得N2与CH4之间存在最优配比。结果表明,优化后的丙烷预冷膨胀液化流程比功耗要比传统氮气膨胀液化流程要少22.7%。制冷剂在循环过程中均处于气相,受外部环境影响较小,因此优化后的N2-CH4膨胀流程在我国小型零散天然气市场具有良好的前景。  相似文献   

8.
液化天然气(Liquefied natural gas,LNG) 因单位热值二氧化碳排放量低、 能量密度高、 清洁等优点, 成为世界能源市场上增速最快的化石燃料. 利用液化系统对 LNG 储运过程产生的闪蒸气(Boiled off gas,BOG) 进行液化回收, 不仅有显著的经济效益, 同时可以满足环保要求. 基于 LNG 运输过程中 BOG 再液化需求, 本文设计了带冷量回收的新型混合工质再液化系统, 同时建立了4 种常规 BOG 液化系统模型, 利用化工流程模拟软件分析了典型工况下各系统的工作原理及内部能量传递关系, 并对比了不同工况下各系统性能. 结果表明, 在所设进出口条件下: 当 BOG 组分为纯甲烷时, 混合工质液化系统比功耗及所需冷却水量明显低于氮膨胀液化系统, 新型混合工质液化系统比功耗最低为0.53 kWh· kg-1 ;BOG 流量每增加100 kg· h-1 , 氮膨胀液化系统功耗增加约100.05 kW,而带冷量回收的液化系统功耗仅增加63.60 kW. 当 BOG 组分中氮气含量增加时, 液化率降低, 所需的制冷量、 冷却水量均降低; 当氮气含量约为5 % 时存在最小比功耗, 此时氮膨胀系统比功耗最小为0.96 kWh· kg-1 , 带冷量回收的混合工质液化系统比功耗最低为0.51 kWh· kg-1 . 带冷量回收的新型混合工质再液化系统结构紧凑、 能耗更低, 是应用于 LNG 船舶 BOG 再液化工艺的优选方案之一.  相似文献   

9.
将煤层气液化后运往终端市场是一种十分有效的利用方式。与常规天然气不同,抽放煤层气含氮量高,采用有效的方式实现CH4/N2分离是煤层气液化流程中重要的环节。吸附分离是提高煤层气中甲烷浓度的可行方法。为了与低温液化过程紧密结合,探讨在低温下实现CH4/N2吸附分离的可行性,文中对CH4/N2在碳分子筛(CMS)上的低温分离特性进行了实验研究,并与常温下的实验结果进行了对比。实验结果表明,低温下CH4/N2吸附分离的特性与常温下有明显差别。  相似文献   

10.
带膨胀机液化流程由于流程简单、安全性高等优点,在小型边际气田以及FPSO-LNG具有广阔的市场前景。对传统氮气膨胀液化流程进行创新与优化,以提高能量利用效率,是液化流程研究的关键点。采用HYSYS软件以比功耗作为目标函数,对不同带膨胀机液化流程中膨胀机的关键运行参数进行优化研究,给出不同膨胀机液化流程中膨胀机的关键运行参数对流程性能的影响。研究结果表明,在换热器压力承受范围内提高膨胀机的出口压力对于降低能耗具有显著作用,合理选取双循环膨胀流程中的制冷剂有益于节能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号