首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoporous carbons (NPCs) have large specific surface areas, good electrical and thermal conductivity, and both chemical and mechanical stability, which facilitate their use in energy storage device applications. In the present study, highly graphitized NPCs are synthesized by one‐step direct carbonization of cobalt‐containing zeolitic imidazolate framework‐67 (ZIF‐67). After chemical etching, the deposited Co content can be completely removed to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity (high content of sp2‐bonded carbons). A detailed electrochemical study is performed using cyclic voltammetry and galvanostatic charge–discharge measurements. Our NPC is very promising for efficient electrodes for high‐performance supercapacitor applications. A maximum specific capacitance of 238 F g?1 is observed at a scan rate of 20 mV s?1. This value is very high compared to previous works on carbon‐based electric double layer capacitors.  相似文献   

2.
The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview.  相似文献   

3.
The ever‐increasing consumption of a huge quantity of lithium batteries, for example, Li–MnO2 cells, raises critical concern about their recycling. We demonstrate herein that decayed Li–MnO2 cells can be further utilized as rechargeable lithium–air cells with admitted oxygen. We further investigated the effects of lithiated manganese dioxide on the electrocatalytic properties of oxygen‐reduction and oxygen‐evolution reactions (ORR/OER). The catalytic activity was found to be correlated with the composition of LixMnO2 electrodes (0<x<1) generated in situ in aprotic Li–MnO2 cells owing to tuning of the Mn valence and electronic structure. In particular, modestly lithiated Li0.50MnO2 exhibited superior performance with enhanced round‐trip efficiency (ca. 76 %), high cycling ability (190 cycles), and high discharge capacity (10 823 mA h gcarbon?1). The results indicate that the use of depleted Li–MnO2 batteries can be prolonged by their application as rechargeable lithium–air batteries.  相似文献   

4.
The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li–S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid‐liquid‐solid multi‐phase conversion, the electrolyte amount plays a primary role in the practical performances of Li–S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li–S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high‐sulfur‐loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li–S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution–precipitation conversion and the solid–solid multi‐phasic transition. Finally, prospects of future lean‐electrolyte Li–S battery design and engineering are discussed.  相似文献   

5.
Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium‐ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium‐ion batteries (SIBs) have been reconsidered with the aim of providing a lower‐cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state‐of‐the art overview on the redox behavior of materials when used as electrodes in lithium‐ion and sodium‐ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed.  相似文献   

6.
We report a new method to promote the conductivities of metal–organic frameworks (MOFs) by 5 to 7 magnitudes, thus their potential in electrochemical applications can be fully revealed. This method combines the polarity and porosity advantages of MOFs with the conductive feature of conductive polymers, in this case, polypyrrole (ppy), to construct ppy‐MOF compartments for the confinement of sulfur in Li–S batteries. The performances of these ppy‐S‐in‐MOF electrodes exceed those of their MOF and ppy counterparts, especially at high charge–discharge rates. For the first time, the critical role of ion diffusion to the high rate performance was elucidated by comparing ppy‐MOF compartments with different pore geometries. The ppy‐S‐in‐PCN‐224 electrode with cross‐linked pores and tunnels stood out, with a high capacity of 670 and 440 mAh g?1 at 10.0 C after 200 and 1000 cycles, respectively, representing a new benchmark for long‐cycle performance at high rate in Li–S batteries.  相似文献   

7.
Flexible lithium‐ion batteries (LIBs) have recently attracted increasing attention with the fast development of bendable electronic systems. Herein, a facile and template‐free solvothermal method is presented for the fabrication of hybrid yolk–shell CoS2 and nitrogen‐doped graphene (NG) sheets. The yolk–shell architecture of CoS2 encapsulated with NG coating is designed for the dual protection of CoS2 to address the structural and interfacial stability concerns facing the CoS2 anode. The as‐prepared composite can be assembled into a film, which can be used as a binder‐free and flexible electrode for LIBs that does not require any carbon black conducting additives or current collectors. When evaluating lithium‐storage properties, such a flexible electrode exhibits a high specific capacity of 992 mAh g?1 in the first reversible discharge capacity at a current rate of 100 mA g?1 and high reversible capacity of 882 mAh g?1 after 150 cycles with excellent capacity retention of 89.91 %. Furthermore, a reversible capacity as high as 655 mAh g?1 is still achieved after 50 cycles even at a high rate of 5 C due to the yolk–shell structure and NG coating, which not only provide short Li‐ion and electron pathways, but also accommodate large volume variation.  相似文献   

8.
Herein, we suggest a new approach to an electric double‐layer capacitor (EDLC) that is based on a proton‐conducting ionic clathrate hydrate (ICH). The ice‐like structures of clathrate hydrates, which are comprised of host water molecules and guest ions, make them suitable for applications in EDLC electrolytes, owing to their high proton conductivities and thermal stabilities. The carbon materials in the ICH Me4NOH ? 5 H2O show a high specific capacitance, reversible charge–discharge behavior, and a long cycle life. The ionic‐hydrate complex provides the following advantages in comparison with conventional aqueous and polymer electrolytes: 1) The ICH does not cause leakage problems under normal EDLC operating conditions. 2) The hydrate material can be utilized itself, without requiring any pre‐treatments or activation for proton conduction, thus shortening the preparation procedure of the EDLC. 3) The crystallization of the ICH makes it possible to tailor practical EDLC dimensions because of its fluidity as a liquid hydrate. 4) The hydrate solid electrolyte exhibits more‐favorable electrochemical stability than aqueous and polymer electrolytes. Therefore, ICH materials are expected to find practical applications in versatile energy devices that incorporate electrochemical systems.  相似文献   

9.
A three‐dimensional (3D) hierarchical MOF‐on‐reduced graphene oxide (MOF‐on‐rGO) compartment was successfully synthesized through an in situ reduced and combined process. The unique properties of the MOF‐on‐rGO compartment combining the polarity and porous features of MOFs with the high conductivity of rGO make it an ideal candidate as a sulfur host in lithium–sulfur (Li‐S) batteries. A high initial discharge capacity of 1250 mAh g?1 at a current density of 0.1 C (1.0 C=1675 mAh g?1) was reached using the MOF‐on‐rGO based electrode. At the rate of 1.0 C, a high specific capacity of 601 mAh g?1 was still maintained after 400 discharge–charge cycles, which could be ascribed to the synergistic effect between MOFs and rGO. Both the hierarchical structures of rGO and the polar pore environment of MOF retard the diffusion and migration of soluble polysulfide, contributing to a stable cycling performance. Moreover, the spongy‐layered rGO can buffer the volume expansion and contraction changes, thus supplying stable structures for Li‐S batteries.  相似文献   

10.
Lithium–sulfur (Li–S) batteries are highly appealing for large‐scale energy storage. However, performance deterioration issues remain, which are highly related to interfacial properties. Herein, we present a direct visualization of the interfacial structure and dynamics of the Li–S discharge/charge processes at the nanoscale. In situ atomic force microscopy and ex situ spectroscopic methods directly distinguish the morphology and growth processes of insoluble products Li2S2 and Li2S. The monitored interfacial dynamics show that Li2S2 nanoparticle nuclei begin to grow at 2 V followed by a fast deposition of lamellar Li2S at 1.83 V on discharge. Upon charging, only Li2S depletes from the interface, leaving some Li2S2 undissolved, which accumulates during cycling. The galvanostatic precipitation of Li2S2 and/or Li2S is correlated to current rates and affects the specific capacity. These findings reveal a straightforward structure–reactivity correlation and performance fading mechanism in Li–S batteries.  相似文献   

11.
This study presents the construction and dielectric properties investigation of atomic-layer-deposition Al2O3/TiO2/HfO2 dielectric-film-based metal–insulator–metal (MIM) capacitors. The influence of the dielectric layer material and thickness on the performance of MIM capacitors are also systematically investigated. The morphology and surface roughness of dielectric films for different materials and thicknesses are analyzed via atomic force microscopy (AFM). Among them, the 25 nm Al2O3-based dielectric capacitor exhibits superior comprehensive electrical performance, including a high capacitance density of 7.89 fF·µm−2, desirable breakdown voltage and leakage current of about 12 V and 1.4 × 10−10 A·cm−2, and quadratic voltage coefficient of 303.6 ppm·V−2. Simultaneously, the fabricated capacitor indicates desirable stability in terms of frequency and bias voltage (at 1 MHz), with the corresponding slight capacitance density variation of about 0.52 fF·µm−2 and 0.25 fF·µm−2. Furthermore, the mechanism of the variation in capacitance density and leakage current might be attributed to the Poole–Frenkel emission and charge-trapping effect of the high-k materials. All these results indicate potential applications in integrated passive devices.  相似文献   

12.
Lithium–sulfur (Li‐S) batteries have been considered as a promising candidate for next‐generation electrochemical energy‐storage technologies because of their overwhelming advantages in energy density. Suppression of the polysulfide dissolution while maintaining a high sulfur utilization is the main challenge for Li–S batteries. Here, we have designed and synthesized double‐shelled nanocages with two shells of cobalt hydroxide and layered double hydroxides (CH@LDH) as a conceptually new sulfur host for Li–S batteries. Specifically, the hollow CH@LDH polyhedra with complex shell structures not only maximize the advantages of hollow nanostructures for encapsulating a high content of sulfur (75 wt %), but also provide sufficient self‐functionalized surfaces for chemically bonding with polysulfides to suppress their outward dissolution. When evaluated as cathode material for Li–S batteries, the CH@LDH/S composite shows a significantly improved electrochemical performance.  相似文献   

13.
Lithium–sulfur (Li–S) batteries are one of the most promising next‐generation batteries owing to their ultra‐high theoretical energy density and that sulfur is an abundant resource. During the past 20 years, various sulfur materials have been reported. As a molecular‐scale sulfur‐composite cathode, sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) exhibits several competitive advantages in terms of its electrochemical behavior. Although it was first reported in 2002 S@pPAN is currently attracting increasing attention. In this Minireview, we summarize its molecular model and explore the correlation between its structure and its exceptional electrochemical performance. We classify the modification strategies into three types, including material improvement, binder, and electrolyte screening. Several research and development directions are also suggested.  相似文献   

14.
15.
Although using an air cathode is the goal for superoxide‐based potassium‐oxygen (K‐O2) batteries, prior studies were limited to pure oxygen. Now, the first K‐air (dry) battery based on reversible superoxide electrochemistry is presented. Spectroscopic and gas chromatography analyses are applied to evaluate the reactivity of KO2 in ambient air. Although KO2 reacts with water vapor and CO2 to form KHCO3, it is highly stable in dry air. With this knowledge, rechargeable K‐air (dry) batteries were successfully demonstrated by employing dry air cathode. The reduced partial pressure of oxygen plays a critical role in boosting battery lifespan. With a more stable environment for the K anode, a K‐air (dry) battery delivers over 100 cycles (>500 h) with low round‐trip overpotentials and high coulombic efficiencies as opposed to traditional K‐O2 battery that fails early. This work sheds light on the benefits and restrictions of employing the air cathode in superoxide‐based batteries.  相似文献   

16.
Herein, we report a facile and “green” synthetic route for the preparation of Ge@C core–shell nanocomposites by using a low‐cost Ge precursor. Field‐emission scanning electron microscopy and transmission electron microscopy analyses confirmed the core–shell nanoarchitecture of the Ge@C nanocomposites, with particle sizes ranging from 60 to 100 nm. Individual Ge nanocrystals were coated by a continuous carbon layer, which had an average thickness of 2 nm. When applied as an anode materials for lithium‐ion batteries, the Ge@C nanocomposites exhibited a high initial discharge capacity of 1670 mAh g?1 and superior rate capability. In particular, Ge@C nanocomposite electrodes maintained a reversible capacity of 734 mAh g?1 after repeated cycling at a current density of 800 mA g?1 over 100 cycles.  相似文献   

17.
This research presents a simple and efficient method to synthesize porous nitrogen‐doped carbon microspheres (PNCM) by the carbonization of microporous poly(terephthalaldehyde‐pyrrole) organic frameworks (PtpOF). The common KOH activation process is used to tune the porous texture of the PNCM and produce an activated‐PNCM (A‐PNCM). The PNCM and A‐PNCM with specific surface area of 921 and 1303 m2 g?1, respectively, are demonstrated as promising candidates for EDLCs. At a current density of 0.5 A g?1, the specific capacitances of the PNCM and A‐PNCM are 248 and 282 F g?1, respectively. At the relatively high current density of 20 A g?1, the capacitance remaining is 95 and 154 F g?1, respectively. Capacity retention of the A‐PNCM is more than 92 % after 10 000 charge/discharge cycles at a current density of 2 A g?1.  相似文献   

18.
Lithium–sulfur batteries are amongst the most promising candidates to satisfy emerging energy‐storage demands. Suppression of the polysulfide shuttle while maintaining high sulfur content is the main challenge that faces their practical development. Here, we report that 2D early‐transition‐metal carbide conductive MXene phases—reported to be impressive supercapacitor materials—also perform as excellent sulfur battery hosts owing to their inherently high underlying metallic conductivity and self‐functionalized surfaces. We show that 70 wt % S/Ti2C composites exhibit stable long‐term cycling performance because of strong interaction of the polysulfide species with the surface Ti atoms, demonstrated by X‐ray photoelectron spectroscopy studies. The cathodes show excellent cycling performance with specific capacity close to 1200 mA h g?1 at a five‐hour charge/discharge (C/5) current rate. Capacity retention of 80 % is achieved over 400 cycles at a two‐hour charge/discharge (C/2) current rate.  相似文献   

19.
Lithium (Li) dendrite formation is one of the major hurdles limiting the development of Li‐metal batteries, including Li‐O2 batteries. Herein, we report the first observation of the dendrite‐free epitaxial growth of a Li metal up to 10‐μm thick during charging (plating) in the LiBr‐LiNO3 dual anion electrolyte under O2 atmosphere. This phenomenon is due to the formation of an ultrathin and homogeneous Li2O‐rich solid‐electrolyte interphase (SEI) layer in the preceding discharge (stripping) process, where the corrosive nature of Br? seems to give rise to remove the original incompact passivation layer and NO3? oxidizes (passivates) the freshly formed Li surface to prevent further reactions with the electrolyte. Such reactions keep the SEI thin (<100 nm) and facilitates the electropolishing effect and gets ready for the epitaxial electroplating of Li in the following charge process.  相似文献   

20.
The development of various redox‐flow batteries for the storage of fluctuating renewable energy has intensified in recent years because of their peculiar ability to be scaled separately in terms of energy and power, and therefore potentially to reduce the costs of energy storage. This has resulted in a considerable increase in the number of publications on redox‐flow batteries. This was a motivation to present a comprehensive and critical overview of the features of this type of batteries, focusing mainly on the chemistry of electrolytes and introducing a thorough systematic classification to reveal their potential for future development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号