首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of an external magnetic field and gas‐induced friction on the velocity autocorrelation of the dust particles in strongly coupled two‐dimensional Yukawa liquids was investigated. The Langevin dynamics computer simulation method was used. The presence of the friction originating from the background gas leads to the disappearance of a collective oscillation mode, corresponding to the cyclotron frequency of the dust particles, and a decrease in the dominant mode.  相似文献   

2.
An extension of NMR pulsed-field gradient experiments toward the generation, acquisition, and analysis of multiple echoes is presented. In contrast to currently used measurements where a single or double encoding of displacements by gradient pulses is followed by an acquisition of the echo signal at the end of the sequence, sampling and analyzing the intermediately occurring echoes allows a direct distinction between coherent and dispersive contributions to fluid motion without additional referencing measurements. It is shown that a series of gradient pulse pairs, leading to a train of echoes, can be employed to map the time-dependence of the velocity autocorrelation function between displacements within a single experiment for a system undergoing flow or motion.  相似文献   

3.
A theoretical investigation has been carried out to study the effect of strong electrostatic interaction on the dust acoustic shock structures in strongly coupled dusty plasma with dust charge fluctuations.The fluid approach is employed,in which the strong electrostatic interaction is modeled by effective electrostatic temperature.A Burger-like equation,the coefficients of which are significantly modified by effects of strong coupling and dust charge Ructuation,is derived.It is shown that the combined effects of dust charge Ructuation,the ion/electron temperature,the ion/electron population,and strong coupling effect modify the basic properties of the dust acoustic waves in such a strongly coupled dusty plasma.The results of this work are compared with those observed by some laboratory experiments.  相似文献   

4.
A molecular dynamical simulation method is used to investigate the diffusion of the two-dimensional magnetized dusty plasmas. The effects of charge and mass of the particles, as well as the external magnetic field are discussed in detail. It is shown that, relative to the mass of particulate, the charge and magnetic field have a more considerable effect on the diffusion process, particularly on the resulting structure of the system. The dependence of diffusion coefficient on the temperature is shown to be linearly changed over a wide range of temperature.  相似文献   

5.
The nonlinear propagation of dust acoustic waves is investigated in four-component plasmas consisting of positively charged dust grains, trapped ions, nonthermal electrons, and photoelectron due to ultraviolet irradiation.We use generalized viscoelastic hydrodynamic model for strongly coupled dust grain. In the weak nonlinearity limit, a modified Kadomstev–Petviashvili(KP) equation and a modified KP-Burger equation, which have a damping term coming from nonadiabatic charge variation, have been derived in the kinetic regime and hydrodynamic regime, respectively. With the increasing of UV photon flux, the hydrodynamic regime changes to kinetic regime. The approximate analytical line soliton and shock solutions are investigated in the kinetic regime and hydrodynamic regime, respectively.  相似文献   

6.
Large amplitude dust ion acoustic (DIA) solitons as well as double layers (DLs) are studied in a dusty plasma having a high-energy-tail electron distribution. The influence of electron deviation from the Maxwellian distribution and ion streaming on the existence domain of solitons is discussed in the (M, f) space using the pseudo-potential approach. It is found that in the presence of streaming ions and for a fixed f, solitons may appear for larger values of M. This means that in the presence of ion streaming, high values of the Mach number are needed to have soliton. The DIA solitary waves profile is highly sensitive to the ion streaming speed. Their amplitude is found to decrease with an increase of the ion streaming speed. In addition, we find that the ion streaming effect may lead to the appearance of double layers. The results of this axticle should be useful in understanding the basic nonlinear features of DIA waves propagating in space dusty plasmas, especially those including a relative motion between species, such as comet tails and solar wind streams, etc.  相似文献   

7.
In this paper weakly and strongly non‐ideal plasmas are considered. In both cases the equations of state for hydrogen and dusty plasmas were studied on the basis of effective potentials. In the first case the thermodynamic properties for hydrogen plasmas were studied by the method of effective potentials taking into account quantummechanical diffraction, symmetry and screening effects. For strongly non‐ideal plasma or dusty plasma the equations of state were considered using radial distribution functions and effective interaction potential, which describes interactions of charged dust grains with dipole moments. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Structures and Dynamics of a Two-Dimensional Confined Dusty Plasma System   总被引:2,自引:0,他引:2  
The influence of the confining potential strength and temperature on the structures and dynamics of a two-dimensional (2D) dusty plasma system is investigated through molecular dynamic (MD) simulation. The circular symmetric confining potential leads to the nonuniform packing of particles, that is, an inner core with a hexagon lattice surrounded by a few outer circular shells. Under the appropriate confining potential and temperature, the particle trajectories on middle shells form a series of concentric and nested hexagons due to tangential movements of particles. Mean square displacement, self-diffusion constant, pair correlation function, and the nearest bond are used to characterize the structural and dynamical properties of the system. With the increase of the confining potential, the radial and tangential movements of particles have different behaviors. With the increase of temperature, the radial and tangential motions strengthen, particle trajectories gradually become disordered, and the system gradually changes from a crystal or liquid state to a gas state.  相似文献   

9.
The influence of the confining potential strength and temperature on the structures and dynamics of a two-dimensional (2D) dusty plasma system is investigated through molecular dynamic (MD) simulation. The circular symmetric confining potential leads to the nonuniform packing of particles, that is, an inner core with a hexagon lattice surrounded by a few outer circular shells. Under the appropriate confining potential and temperature, the particle trajectories on middle shells form a series of concentric and nested hexagons due to tangential movements of particles.Mean square displacement, self-diffusion constant, pair correlation function, and the nearest bond are used to characterize the structural and dynamical properties of the system. With the increase of the confining potential, the radial and tangential movements of particles have different behaviors. With the increase of temperature, the radial and tangential motions strengthen, particle trajectories gradually become disordered, and the system gradually changes from a crystal or liquid state to a gas state.  相似文献   

10.
The propagation of linear and nonlinear dust ion acoustic waves (DIAWs) are studied in a collisionless magnetized plasma which consists of warm ions having anisotropic thermal pressure, nonthermal (energetic) electrons and static dust particles of positive and negative charge polarity. The anisotropic ion pressure is defined using double adiabatic Chew‐Golberger‐Low (CGL) theory. In the linear regime, the propagation properties of the two possible modes are investigated via ion pressure anisotropy, dust particle polarity and nonthermality of electrons. Using reductive method Zakharov‐Kuznetsov (ZK) equation is derived for the propagation of two dimensional electrostatic dust ion acoustic solitary waves in dusty plasmas. It is found that both compressive and rarefactive solitons are formed in presence of nonthermal electrons using Cairn's distribution [R.A. Cairns, A.A. Mamun, R. Bingham, R.O. Dendy, R. Bostrom, C.M.C. Nairn and P.K. Shukla, Geophys.Res. Lett. 22 , 2709 (1995)] in the system. The ion pressure anisotropy, nonthermality of electrons and charge polarity of the dust particles have significant effects on the amplitude and width of the dust ion acoustic solitary waves in such anisotropic nonthermal magnetized dusty plasmas. The numerical results are also presented for illustration. Our finding is applicable to space dusty plasma regimes having anisotropic ion pressure and nonthermal electrons. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The dispersion relation is derived for three-dimensional dust-acoustic waves in a current-driven dusty plasmas with both positively and negatively charged dust particles. The dependencies of the frequency and the growth rate on the wave number K, the intensity of magnetic field B, and the inclination angle θ have been numerically shown in this paper. The growth rate is negative for the laboratory dusty plasma, but it is positive for the cosmic dusty plasma.It is found that when the inclination angle θ = π/2, there is no instability. The effect of the electrostatic field E0 has also been studied in this paper.  相似文献   

12.
The dispersion relation is derived for three-dimensional dust-acoustic waves in a current-driven dusty plasmas with both positively and negatively charged dust particles. The dependencies of the frequency and the growth rate on the wave number K, the intensity of magnetic field B, and the inclination angle θ have been numerically shown in this paper. The growth rate is negative for the laboratory dusty plasma, but it is positive for the cosmic dusty plasma. It is found that when the inclination angle θ = π/2, there is no instability. The effect of the electrostatic field Eo has also been studied in this paper.  相似文献   

13.
The thermal conductivity of complex fluid materials(dusty plasmas) has been explored through novel Evan-Gillan homogeneous non-equilibrium molecular dynamic(HNEMD) algorithm. The thermal conductivity coefficient obtained from HNEMD is dependent on various plasma parameters(Γ, κ). The proposed algorithm gives accurate results with fast convergence and small size effect over a wide range of plasma parameters. The cross microscopic heat energy current is discussed in association with variation of temperature(1/Γ) and external perturbations(P_z). The thermal conductivity obtained from HNEMD simulations is found to be very good agreement and more reliable than previously known numerical techniques of equilibrium molecular dynamic, nonequilibrium molecular dynamic simulations. Our new investigations point to an effective conclusion that the thermal conductivity of complex dusty plasmas is dependent on an extensive range of plasma coupling(Γ) and screening parameter(κ) and it varies by the alteration in these parameters.It is also shown that a different approach is used for computations of thermal conductivity in 2D complex plasmas and can be appropriate method for behaviors of complex systems.  相似文献   

14.
This article presents the experimental study of dust structures formed in striations of glow discharge in an external magnetic field of up to 104 G, which was created using a cryomagnet. A magnetic field classification based on probe theory is described. In moderate magnetic field, we obtained stable dust structures. The corresponding experimental setup and the experiment itself are described in detail. Special attention was paid to the influence of magnetic field on the change of the diameter and inter‐particle distance of dusty cloud. And, we also determined the dependence of angular velocity of dust rotation on magnetic induction.  相似文献   

15.
The effect of hydrodynamical damping that arises due to the irreversible processes within the system have been studied on 1D nonlinear longitudinal dust lattice wave (LDLW) in homogeneous strongly coupled complex (dusty) plasma. Analytical investigation shows that the nonlinear wave is governed by Korteweg‐de Vries Burgers' equation. This hydrodynamical damping induced dissipative effect is responsible for the Burgers' term that causes the generation of shock wave in dusty plasma crystal. Numerical investigation on the basis of the glow‐discharge plasma parameters reveal that LDLW exhibits both oscillatory and monotonic shock. The shock is compressive in nature and its strength decreases (increases) with the increase of the shielding parameter κ (characteristic length L). The effects of dust‐neutral collision are also discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
An improved method is proposed to investigate the behavior of a Yukawa liquid under the action of an external field strength using computer simulated nonequilibrium molecular dynamics. The thermal conductivity calculations with appropriate normalizations, in the limit of low value field strengths, are estimated over a wide range of the Coulomb coupling and screening strengths. The new simulations provide more reliable data for the thermal conductivity than the previously known results for the Yukawa liquids. The calculations show that the thermal conductivity is dependent on both the Coulomb coupling and screening parameters in the three‐dimensional (3D) Yukawa liquids. The low value field strength simulation data are found to obey the universal and quasiuniversal scaling. It is shown that the homogenous nonequilibrium method can be used to predict the thermal conductivity in Yukawa systems and to understand the fundamental features of 3D dusty plasma liquids (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The structure and single-particle motion of a two-dimensional dusty plasma have been investigated. Pair correlation function, mean square displacement, velocity autocorrelation function, and the corresponding spectrum function have been computed by molecular dynamical simulation. The results show that the coagulation of a two-dimensional dusty plasma system is strongly affected by particle density and temperature, which are discussed in details.  相似文献   

18.
In this paper, a self‐consistent numerical model describing the behaviour of plasma around isolated highly charged dust particles with different shapes of rotation figures is presented. Dust particles in the form of a sphere, oblate ellipsoids (disk‐like particles), and elongated ellipsoids (rod‐like particles) are considered in the presence of an external electric field. Using the developed model, self‐consistent distributions of a space charge and plasma potential are obtained around non‐spherical dust particles. These distributions are carefully analysed by decomposing them in a series of Legendre polynomials. Decompositions of these distributions are compared with particles of different geometry. In addition, for different geometries of dust particles, the dependencies of the charge of a dust particle on geometry in the absence of an external field are investigated.  相似文献   

19.
The dispersion relation for general dust low frequency electrostatic surface waves propagating on an interface between a magnetized dusty plasma region and a vacuum is derived by using specular reflection boundary conditions both in classical and quantum regimes. The frequency limit ωωci ωce is considered and the dispersion relation for the Dust-Lower-Hybrid Surface Waves(DLHSW's) is derived for both classical and quantum plasma half-space and analyzed numerically. It is shown that the wave behavior changes as the quantum nature of the problem is considered.  相似文献   

20.
The dispersion relation for general dust low frequency electrostatic surface waves propagating on an interface between a magnetized dusty plasma region and a vacuum is derived by using specular reflection boundary conditions both in classical and quantum regimes. The frequency limit ω«ωci«ωce is considered and the dispersion relation for the Dust-Lower-Hybrid Surface Waves (DLHSW's) is derived for both classical and quantum plasma half-space and analyzed numerically. It is shown that the wave behavior changes as the quantum nature of the problem is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号