首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article we report on the fabrication of a carbon ionic liquid electrode (CILE) by using a room temperature ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) as binder. It was further modified by single‐walled carbon nanotubes (SWCNTs) to get a SWCNTs modified CILE denoted as SWCNTs/CILE. The redox protein of hemoglobin (Hb) was further immobilized on the surface of SWCNTs/CILE with the help of Nafion film. UV‐vis and FT‐IR spectra indicated that the immobilized Hb retained its native conformation in the composite film. The direct electrochemistry of Hb on the SWCNTs/CILE was carefully studied in pH 7.0 phosphate buffer solution (PBS). Cyclic voltammetric results indicated that a pair of well‐defined and quasireversible voltammetric peaks of Hb heme Fe(III)/Fe(II) was obtained with the formal potential (E°') at ?0.306 V (vs. SCE). The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n) and the apparent heterogeneous electron transfer rate constant (ks) were calculated as 0.34, 0.989 and 0.538 s?1, respectively. The fabricated Hb modified electrode showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) in the concentration range from 20.0 to 150.0 mmol/L with the detection limit of 10.0 mmol/L (3σ).  相似文献   

2.
By using a 1‐butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the working electrode, graphene (GR) nanosheets and silver nanoparticles (Ag NPs) were step by step electrodeposited on the surface of the CILE with potentiostatic method. The fabricated Ag/GR/CILE was used as a new platform for protein electrochemistry and hemoglobin (Hb) was immobilized on its surface with chitosan (CTS) as film forming material. In 0.1 mol/L phosphate buffer solution, a pair of well‐defined and quasi‐reversible redox peaks appeared on the CTS/Hb/Ag/GR/CILE with a formal peak potential of ?0.202 V (vs. SCE) and a peak‐to‐peak separation (ΔEp) of 68 mV, which indicated that direct electrochemistry of Hb was realized on the modified electrode. The results could be attributed to the synergistic effects of Ag NPs and GR nanosheets on the electrode surface, which provided a specific three‐dimensional structure with high conductivity and good biocompatibility. The Hb modified electrode showed excellent electrocatalysis to the reduction of trichloroacetic acid in the concentration range from 0.8 to 22.0 mmol/L with a detection limit of 0.42 mmol/L (3σ). Moreover, the modified electrode exhibited favorable reproducibility, long term stability and accuracy, with potential applications in the third‐generation electrochemical biosensor.  相似文献   

3.
Titanium dioxide (TiO2) nanowires were synthesized and used for the realization of direct electrochemistry of hemoglobin (Hb) with carbon ionic liquid electrode (CILE) as the substrate electrode. TiO2‐Hb composite was casted on the surface of CILE with a chitosan film and spectroscopic results confirmed that Hb retained its native structure in the composite. Direct electron transfer of Hb on the modified electrode was realized with a pair of quasi‐reversible redox waves appeared, indicating that the presence of TiO2 nanowires could accelerate the electron transfer rate between the electroactive center of Hb and the substrate electrode. Electrochemical behaviors of Hb on the modified electrode were carefully investigated with the values of the electron transfer coefficient (α), the electron transfer number and the heterogeneous electron transfer rate constant (ks) as 0.58, 0.98 and 1.62 s‐1. The Hb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid and NaNO2 with wider linear range and lower detection limit, indicating the successful fabrication of a new third‐generation biosensor.  相似文献   

4.
Room temperature ionic liquids (RTILs) N‐butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE) was fabricated and applied to adsorb the hemoglobin (Hb) and TiO2 nanoparticles on the electrode surface step by step to form a Hb modified electrode noted as TiO2/Hb/CILE. UV‐Vis and FT‐IR spectra showed that Hb in the film retained its native conformations. Cyclic voltammetric experiments indicated that a pair of well‐defined quasi‐reversible redox peaks appeared with the formal potential (E0′) located at ?0.251 V (vs. SCE) at pH 7.0 phosphate buffer solution (PBS), which was the characteristic of heme Fe(III)/Fe(II) redox couples. Electrochemical parameters of the Hb in the film such as the electron transfer coefficient (α), the electron transfer number (n) and the standard electron transfer rate constant (ks) were estimated as 0.469, 0.87 and 0.635 s?1, respectively.  相似文献   

5.
A new hemoglobin (Hb) and room temperature ionic liquid modified carbon paste electrode was constructed by mixing Hb with 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) and graphite powder together. The Hb modified carbon ionic liquid electrode (Hb‐CILE) was further characterized by FT‐IR spectra, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Hb in the carbon ionic liquid electrode remained its natural structure and showed good direct electrochemical behaviors. A pair of well‐defined quasireversible redox peaks appeared with the apparent standard potential (E′) as ?0.334 (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical parameters such as the electron transfer number (n), the electron transfer coefficient (α) and the heterogeneous electron transfer kinetic constant (ks) of the electrode reaction were calculated with the results as 1.2, 0.465 and 0.434 s?1, respectively. The fabricated Hb‐CILE exhibited excellent electrocatalytic activity to the reduction of H2O2. The calibration range for H2O2 quantitation was between 8.0×10?6 mol/L and 2.8×10?4 mol/L with the linear regression equation as Iss (μA)=0.12 C (μmol/L)+0.73 (n=18, γ=0.997) and the detection limit as 1.0×10?6 mol/L (3σ). The apparent Michaelis–Menten constant (KMapp) of Hb in the modified electrode was estimated to be 1.103 mmol/L. The surface of this electrochemical sensor can be renewed by a simple polishing step and showed good reproducibility.  相似文献   

6.
A new electrochemical biosensor was constructed by immobilization of hemoglobin (Hb) on a DNA modified carbon ionic liquid electrode (CILE), which was prepared by using 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) as the modifier. UV‐vis absorption spectroscopic result indicated that Hb remained its native conformation in the composite film. The fabricated Nafion/Hb/DNA/CILE was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A pair of well‐defined redox peaks was obtained on the modified electrode, indicated that the Nafion and DNA composite film provided an excellent biocompatible microenvironment for keeping the native structure of Hb and promoting the direct electron transfer rate of Hb with the basal electrode. The electrochemical parameters of Hb in the composite film were further calculated with the results of the charge transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (ks) as 0.41 and 0.31 s?1. The proposed electrochemical biosensor showed good electrocatalytic response to the reduction of trichloroacetic acid (TCA), H2O2, NO and the apparent Michaelis–Menten constant (KMapp) for the electrocatalytic reaction was calculated, respectively.  相似文献   

7.
A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s−1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L−1 with a detection limit of 0.0153 mmol L−1 (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L−1 with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L−1 with a detection limit of 0.282 μmol L−1 (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator.  相似文献   

8.
We have constructed a new electrochemical biosensor by immobilization of hemoglobin (Hb) and ZnWO4 nanorods in a thin film of chitosan (CTS) on the surface of carbon ionic liquid electrode. UV–vis and FT-IR spectra reveal that Hb remains in its native conformation in the film. The modified electrode was characterized by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. A pair of well-defined redox peaks appears which indicates direct electron transfer from the electrode. The presence of CTS also warrants biocompatibility. The electron transfer coefficient and the apparent heterogeneous electron transfer rate constant were calculated to be 0.35 and 0.757 s?1, respectively. The modified electrode displays good electrocatalytic activity for the reduction of trichloroacetic acid with the detection limit of 0.613 mmol L?1 (3σ). The results extend the protein electrochemistry based on the use of ZnWO4 nanorods.
Figure
A ZnWO4 nanorods and hemoglobin nanocomposite material modified carbon ionic liquid electrode was used as the platform for the construction of an electrochemical hemoglobin biosensor.  相似文献   

9.
In this paper a room temperature ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) was used as binder for the construction of carbon ionic liquid electrode (CILE) and a new electrochemical biosensor was developed for determination of H2O2 by immobilization of hemoglobin (Hb) in the composite film of Nafion/nano‐CaCO3 on the surface of CILE. The Hb modified electrode showed a pair of well‐defined, quasi‐reversible redox peaks with Epa and Epc as ?0.265 V and ?0.470 V (vs. SCE). The formal potential (E°′) was got by the midpoint of Epa and Epc as ?0.368 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The peak to peak separation was 205 mV in pH 7.0 Britton–Robinson (B–R) buffer solution at the scan rate of 100 mV/s. The direct electrochemistry of Hb in the film was carefully investigated and the electrochemical parameters of Hb on the modified electrode were calculated as α=0.487 and ks=0.128 s?1. The Nafion/nano‐CaCO3/Hb film electrode showed good electrocatalysis to the reduction of H2O2 in the linear range from 8.0 to 240.0 μmol/L and the detection limit as 5.0 μmol/L (3σ). The apparent Michaelis–Menten constant (KMapp) was estimated to be 65.7 μmol/L. UV‐vis absorption spectroscopy and FT‐IR spectroscopy showed that Hb in the Nafion/nano‐CaCO3 composite film could retain its native structure.  相似文献   

10.
A room temperature ionic liquid (RTIL) modified carbon paste electrode was constructed based on the substitute of paraffin with 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) as binder for carbon paste. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the sodium alginate (SA) hydrogel film on the surface of this carbon ionic liquid electrode (CILE) were investigated. The presence of IL in the CILE increased the electron transfer rate and provided a biocompatible interface. Hb remained its bioactivity on the surface of CILE and the SA/Hb modified electrode showed a pair of well-defined, quasi-reversible cyclic voltammetric peaks with the apparent standard potential (E0′) at about −0.344 V (vs. SCE) in pH 7.0 Britton–Robinson (B–R) buffer solution, which was attributed to the Hb Fe(III)/Fe(II) redox couple. UV–Vis absorption spectra indicated that heme microenvironment of Hb in SA film was similar to its native status. Hb showed a thin-layer electrochemical behavior in the SA film with the direct electron transfer achieved on CILE without the help of electron mediator. Electrochemical investigation indicated that Hb took place one proton with one electron electrode process and the average surface coverage of Hb in the SA film was 3.2 × 10−10 mol/cm2. The immobilized Hb showed excellent electrocatalytic responses to the reduction of H2O2 and nitrite.  相似文献   

11.
Multilayers of myoglobin (Mb) with ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM]BF4) was assembled on carbon ionic liquid electrode (CILE) based on the electrostatic attraction between the negatively charged Mb and the positively charged imidazolium ion of IL. The CILE was fabricated with 1‐ethyl‐3‐methylimidazolium ethylsulfate ([EMIM]EtOSO3) as the modifier, which exhibited imidazolium ion on the electrode surface. Then Mb molecules were assembled on the surface of CILE step‐by‐step to get a {IL/Mb}n multilayer film modified electrode. UV‐Vis adsorption and FT‐IR spectra indicated that Mb remained its native structure in the IL matrix. In deaerated phosphate buffer solution (pH 7.0) a pair of well‐defined quasi‐reversible redox peaks appeared with the apparent formal potential (E0′) as ‐0.212 V (vs. SCE), which was the characteristic of Mb heme Fe(III)/Fe(II) redox couples. The results indicated that the direct electron transfer of Mb was realized on the modified electrode. The {IL/Mb}n/CILE displayed excellent electrocatalytic ability to the trichloroacetic acid reduction in the concentration range from 2.0 to 22.0 mmol/L with the detection limit of 0.6 mmol/L (3σ). The proposed method provides a new platform to fabricate the third generation biosensor based on the self‐assembly of redox protein with ILs.  相似文献   

12.
In this article, a carbon ionic liquid electrode (CILE) was fabricated by using ionic liquid N-hexylpyridinium hexafluorophosphate as the binder and the modifier. Then urchinlike MnO2 microsphere and chitosan (CTS) was further casted on the CILE surface step-by-step to get a modified electrode that was denoted as CTS/MnO2/CILE. Cyclic voltammetric studies indicated that bisphenol A (BPA) exhibited a well-defined oxidation peak at 0.486 V in 22.83 g L?1 pH 8.0 Britton?Robinson buffer solution, which was attributed to the electro-oxidation of BPA on the modified electrode. The presence of urchinlike MnO2 microsphere on the electrode surface could increase the oxidation peak current (Ipa) greatly, which may be due to the larger surface area that could adsorb more BPA on the electrode surface. Electrochemical parameters of BPA on the modified electrode were calculated with the electron transfer coefficient (α) as 0.66 and the apparent heterogeneous electron transfer rate constant (ks) as 0.50 s?1. Under the optimal conditions, a linear relationship between the Ipa of BPA and its concentration was obtained in the range from 1.37 × 10–1 mg L?1 to 182.6 mg L?1 with the detection limit as 7.31 × 10–3 mg L?1 (3σ). The CTS/MnO2/CILE was applied to the detection of BPA content in different kinds of samples with satisfactory results.  相似文献   

13.
By one‐step co‐electrodeposition CaCO3 nanoparticles‐chitosan composite film on carbon ionic liquid electrode (CILE), and then by spreading the composition of hemoglobin (Hb) and chitosan on the nanoCaCO3‐chi/CILE, a Hb‐chi/nanoCaCO3‐chi/CILE was fabricated and the direct electrochemistry and electrocatalysis of Hb at the electrode was investigated. The electrochemical impedance spectroscopy of the modified electrode showed the electron transfer resistance was 1166 Ω. Investigation results of cyclic voltammetrys showed a pair of well‐defined and quasireversible redox peak of Hb with the formal potentials of ‐0.295 V (vs. SCE) in 0.1 mol·L‐1 pH 7.0 PBS; the response time of the reduction peak currents of Hb was lower than 3s; a linear range for determination of H2O2 was from 5.0 μmol·L‐1 to 1.3 mmol·L‐1 with a detection limit of 1.6 μmol·L‐1 (S/N = 3) and a sensitivity of 0.16 A·M‐1·cm‐2; the electron transfer rate constant and the apparent Michaelis‐Menten constant of Hb were 1.98 s‐1 and 0.81 mmol·L‐1, respectively. As a result, the case of the one‐step co‐electrodeposition and the promising feature of biocomposite could serve as a versatile platform for the fabrication of electrochemical biosensors.  相似文献   

14.
Direct electrochemistry of hemoglobin (Hb) was realized on a Nafion and CuS microsphere composite film modified carbon ionic liquid electrode (CILE) with N-butylpyridinium hexafluorophosphate (BPPF6) as binder. Scanning electron microscopy (SEM), UV-Vis absorption spectroscopy and cyclic voltammetry were used to characterize the fabricated Nafion/CuS/Hb/CILE. Experimental results showed that a pair of well-defined quasi-reversible redox peaks appeared with the formal potential as ?0.386 V (vs. SCE) in pH 7.0 Britton-Robinson (B-R) buffer solution, which was attributed to the Hb heme Fe(III)/Fe(II) redox couples. The electrochemical parameters of Hb in the composite film were carefully investigated with the charge transfer coefficient (α), the electron transfer number (n) and the electron transfer rate constant (k s) as 0.505, 1.196 and 0.610 s?1, respectively. The composite film provided a favorable microenvironment for retaining the native structure of Hb. The presence of CuS microspheres showed great improvement on the electron transfer rate of Hb with the CILE, which maybe due to the contribution of specific characteristics of CuS microspheres and the inherent advantages of ionic liquid on the modified electrode. The fabricated Hb modified electrode showed good electrocatalytic ability in the reduction of H2O2. The proposed bioelectrode can be used as a new third generation H2O2 biosensor.  相似文献   

15.
《中国化学会会志》2018,65(9):1127-1135
In this paper, a WS2 nanosheet was modified on the surface of a carbon ionic liquid electrode (CILE), and horseradish peroxidase (HRP) was further fixed on the electrode with a Nafion film. Direct electrochemistry and bioelectrocatalysis of HRP incorporated on the modified electrode were investigated in detail. On Nafion/HRP/WS2/CILE, a pair of well‐defined quasi‐reversible redox peaks appeared on the cyclic voltammogram, indicating that the presence of the WS2 nanosheet on the electrode surface could provide a specific interface with large surface area for HRP and its direct electron transfer rate was greatly enhanced. The formal potential (E0) obtained was –0.179 V, which was the typical feature of heme Fe(III)/Fe(II) in HRP. The electron transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) of HRP were calculated as 0.44 and 1.01 s–1, respectively. This HRP‐modified electrode showed excellent electrocatalytic activity for the reduction of trichloroacetic acid and NaNO2 with a wide linear range and low detection limit. Real samples were detected by this proposed method, indicating the successful fabrication of a new third‐generation electrochemical enzyme sensor utilizing the WS2 nanosheet.  相似文献   

16.
Based on graphene (GR), TiO2 nanorods, and chitosan (CTS) nanocomposite modified carbon ionic liquid electrode (CILE) as substrate electrode, a new electrochemical DNA biosensor was effectively fabricated for the detection of the transgenic soybean sequence of MON89788. By using methylene blue (MB) as hybridization indicator for monitoring the hybridization with different ssDNA sequences, the differential pulse voltammetric response of MB on DNA modified electrodes were recorded and compared. Due to the synergistic effects of TiO2 nanorods and GR on the electrode surface, the electrochemical responses of MB were greatly increased. Under optimal conditions the differential pulse voltammetric response of the target ssDNA sequence could be detected in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 7.21×10?13 mol/L (3σ). This electrochemical DNA biosensor was further applied to the polymerase chain reaction (PCR) product of transgenic soybeans with satisfactory results.  相似文献   

17.
In this paper a carbon ionic liquid electrode (CILE) was fabricated by using a room temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) as binder. By using the CILE as basal electrode, the hemoglobin (Hb) molecule was immobilized on the surface of CILE with a sodium alginate (SA) hydrogel and SiO2 nanoparticles organic-inorganic composite material. The direct electrochemical behaviors of Hb in the bionanocomposite film were further studied in a pH 7.0 Britton-Robinson (B-R) buffer solution. A pair of well-defined quasi-reversible cyclic voltammetric peaks of Hb was obtained on SA/nano-SiO2/Hb/CILE with the formal potential (E0’) at -0.355 V (vs. SCE), which was the characteristic of heme Fe(III)/Fe(II) redox couples. The formal potential of Hb Fe(III)/Fe(II) couple shifted negatively with increasing pH of solution with a slope of -45.2 mV/pH, which indicated that a one electron transfer accompanied with one proton transportation. The immobilized Hb showed good electrocatalytic manner to the reduction of trichloroacetic acid (TCA).  相似文献   

18.
In this paper Cu3Mo2O9 nanosheet was prepared by a hydrothermal method and further used to investigate the direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode (CILE) as the substrate electrode. Hb was mixed with Cu3Mo2O9 nanosheet and cast on the CILE surface with chitosan (CTS) as the film-forming material. UV-vis and FT-IR spectroscopic results showed that Hb remained in its native structure in the composite film. Direct electron transfer of Hb on the modified electrode was realized with a pair of well-defined quasi-reversible redox waves that appeared on cyclic voltammograms. The redox peak potential appeared at ?0.252 V (E pc) and ?0.141 V (E pa), respectively, with the formal peak potential calculated as ?0.196 V, which was the characteristic of electroactive center of Hb heme Fe(III)/Fe(II). The result could be attributed to the presence of Cu3Mo2O9 nanosheet on the electrode surface that was of benefit for the protein orientation and promoted direct electron transfer between the redox active center of Hb and the substrate electrode. The CTS/Cu3Mo2O9–Hb/CILE showed good electrocatalytic ability in reducing different substrates such as trichloroacetic acid, H2O2 and O2, with wider linear range and lower detection limit, thus exhibiting the potential application of the Cu3Mo2O9 nanosheet in third-generation electrochemical biosensors.  相似文献   

19.
In this paper a graphene (GR) modified carbon ionic liquid electrode (CILE) was fabricated and used as the voltammetric sensor for the sensitive detection of catechol. Due to the specific physicochemical characteristics of GR such as high surface area, excellent conductivity and good electrochemical properties, the modified electrode exhibits rapid response and strong catalytic activity with high stability toward the electrochemical oxidation of catechol. A pair of well‐defined redox peaks appeared with the anodic and the cathodic peak potential located at 225 mV and 133 mV (vs.SCE) in pH 6.5 phosphate buffer solution, respectively. Electrochemical behaviors of catechol on the GR modified CILE were carefully investigated and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant (ks) as 1.24 s?1, the charge transfer coefficient (α) as 0.4 and the electron transfer number (n) as 2. Under the selected conditions the differential pulse voltammetric peak current increased linearly with the catechol concentrations in the range from 1.0 × 10‐7 to 7.0 × 10?4mol L‐1 with the detection limit as 3.0 × 10?8mol L‐1 (3σ). The proposed method was further applied to the synthetic waste water samples determination with satisfactory results  相似文献   

20.
A novel biopolymer/room‐temperature ionic liquid composite film based on carrageenan, room temperature ionic liquid (IL) [1‐butyl‐3‐methylimidazolium tetra?uoroborate ([BMIM]BF4)] was explored for immobilization of hemoglobin (Hb) and construction of biosensor. Direct electrochemistry and electrocatalytic behaviors of Hb entrapped in the IL‐carrageenan composite ?lm on the surface of glassy carbon electrode (GCE) were investigated. UV‐vis spectroscopy demonstrated that Hb in the IL‐carrageenan composite ?lm could retain its native secondary structure. A pair of well‐de?ned redox peaks of Hb was obtained at the Hb‐IL‐carrageenan composite ?lm modi?ed electrode through direct electron transfer between the protein and the underlying electrode. The heterogeneous electron transfer rate constant (ks) was 2.02 s?1, indicating great facilitation of the electron transfer between Hb and IL‐carrageenan composite film modi?ed electrode. The modi?ed electrode showed excellent electrocatalytic activity toward reduction of hydrogen peroxide with a linear range of 5.0×10?6 to 1.5×10?4 mol/L and the detection limit was 2.12×10?7 mol/L (S/N=3). The apparent Michaelis‐Menten constant KMapp for hydrogen peroxide was estimated to be 0.02 mmol/L, indicating that the biosensor possessed high af?nity to hydrogen peroxide. In addition, the proposed biosensor showed good reproducibility and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号