共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jamespandi Annaraj Dr. Jaeheung Cho Prof. Dr. Yong‐Min Lee Prof. Dr. Sung Yeon Kim Reza Latifi Sam P. de Visser Dr. Wonwoo Nam Prof. Dr. 《Angewandte Chemie (International ed. in English)》2009,48(23):4150-4153
The dark side of the Mn : A manganese(III) complex bearing a 13‐membered macrocyclic ligand ( 1 , see picture) binds a peroxo ligand in a side‐on η2 fashion. The reactivity of 1 is influenced by the introduction of anionic ligands trans to the peroxo group. Electronic and structural changes upon trans‐ligand binding explain the increased nucleophilicity of the resulting complexes 1 ‐X.
3.
Mononuclear Nonheme Iron(III)‐Iodosylarene and High‐Valent Iron‐Oxo Complexes in Olefin Epoxidation Reactions 下载免费PDF全文
Dr. Bin Wang Dr. Yong‐Min Lee Dr. Mi Sook Seo Prof. Dr. Wonwoo Nam 《Angewandte Chemie (International ed. in English)》2015,54(40):11740-11744
High‐spin iron(III)‐iodosylarene complexes are highly reactive in the epoxidation of olefins, in which epoxides are formed as the major products with high stereospecificity and enantioselectivity. The reactivity of the iron(III)‐iodosylarene intermediates is much greater than that of the corresponding iron(IV)‐oxo complex in these reactions. The iron(III)‐iodosylarene species—not high‐valent iron(IV)‐oxo and iron(V)‐oxo species—are also shown to be the active oxidants in catalytic olefin epoxidation reactions. The present results are discussed in light of the long‐standing controversy on the one oxidant versus multiple oxidants hypothesis in oxidation reactions. 相似文献
4.
Dipankar Sahoo Dr. Matthew G. Quesne Dr. Sam P. de Visser Prof. Dr. Sankar Prasad Rath 《Angewandte Chemie (International ed. in English)》2015,54(16):4796-4800
A key step in cytochrome P450 catalysis includes the spin‐state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin‐state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen‐bonding interactions on the electronic structure of a five‐coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen‐bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations. 相似文献
5.
《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(1):130-137
We have shown previously that iodosylbenzene–iron(III ) porphyrin intermediates ( 2 ) are generated in the reactions of oxoiron(IV ) porphyrin π‐cation radicals ( 1 ) and iodobenzene (PhI), that 1 and 2 are at equilibrium in the presence of PhI, and that the epoxidation of olefins by 2 affords high yields of epoxide products. In the present work, we report detailed mechanistic studies on the nature of the equilibrium between 1 and 2 in the presence of iodoarenes (ArI), the determination of reactive species responsible for olefin epoxidation when two intermediates (i.e., 1 and 2 ) are present in a reaction solution, and the fast oxygen exchange between 1 and H218O in the presence of ArI. In the first part, we have provided strong evidence that 1 and 2 are indeed at equilibrium and that the equilibrium is controlled by factors such as the electronic nature of iron porphyrins, the electron richness of ArI, and the concentration of ArI. Secondly, we have demonstrated that 1 is the sole active oxidant in olefin epoxidation when 1 and 2 are present concurrently in a reaction solution. Finally, we have shown that the presence of ArI in a reaction solution containing 1 and H218O facilitates the oxygen exchange between the oxo group of 1 and H218O and that the oxygen exchange is markedly influenced by factors such as ArI incubation time, the amounts of ArI and H218O used, and the electronic nature of ArI. The latter results are rationalized by the formation of an undetectable amount of 2 from the reaction of 1 and ArI through equilibrium that leads to a fast oxygen exchange between 2 and H218O. 相似文献
6.
Dr. Debangsu Sil Firoz Shah Tuglak Khan Prof. Dr. Sankar Prasad Rath 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(41):14585-14597
The synthesis, structure, and properties of bischloro, μ‐oxo, and a family of μ‐hydroxo complexes (with BF4?, SbF6?, and PF6? counteranions) of diethylpyrrole‐bridged diiron(III) bisporphyrins are reported. Spectroscopic characterization has revealed that the iron centers of the bischloro and μ‐oxo complexes are in the high‐spin state (S=5/2). However, the two iron centers in the diiron(III) μ‐hydroxo complexes are equivalent with high spin (S=5/2) in the solid state and an intermediate‐spin state (S=3/2) in solution. The molecules have been compared with previously known diiron(III) μ‐hydroxo complexes of ethane‐bridged bisporphyrin, in which two different spin states of iron were stabilized under the influence of counteranions. The dimanganese(III) analogues were also synthesized and spectroscopically characterized. A comparison of the X‐ray structural parameters between diethylpyrrole and ethane‐bridged μ‐hydroxo bisporphyrins suggest an increased separation, and hence, less interactions between the two heme units of the former. As a result, unlike the ethane‐bridged μ‐hydroxo complex, both iron centers become equivalent in the diethylpyrrole‐bridged complex and their spin state remains unresponsive to the change in counteranion. The iron(III) centers of the diethylpyrrole‐bridged diiron(III) μ‐oxo bisporphyrin undergo very strong antiferromagnetic interactions (J=?137.7 cm?1), although the coupling constant is reduced to only a weak value in the μ‐hydroxo complexes (J=?42.2, ?44.1, and ?42.4 cm?1 for the BF4, SbF6, and PF6 complexes, respectively). 相似文献
7.
Dr. Linda Iffland-Mühlhaus Dr. Beatrice Battistella Dr. Daniel Siegmund Prof. Dr. Kallol Ray Prof. Dr. Ulf-Peter Apfel 《欧洲无机化学杂志》2023,26(30):e202300418
Cobalt complexes are extensively studied as bioinspired models for non-heme oxygenases as they facilitate both the stabilization and characterization of metal-oxygen intermediates. As an analog to the well-known Co(cyclam) complex Co{N4} (cyclam=1,4,8,11-tetraazacyclotetradecane), the CoII complex Co{i-N4} with the isomeric isocyclam ligand (isocyclam=1,4,7,11-tetraazacyclotetradecane) was synthesized and characterized. Despite the identical N4 donor set of both complexes, Co{i-N4} enables the 2e−/2H+ reduction of O2 with a lower overpotential (ηeff of 385 mV vs. 540 mV for Co{N4} ), albeit with a diminished turnover frequency. Characterization of the intermediates formed upon O2 activation of Co{i-N4} reveals a structurally identified stable μ-peroxo CoIII dimer as the main product. A superoxo CoIII species is also formed as a minor product, as indicated by EPR spectroscopy. In further reactivity studies, the electrophilicity of these in situ generated Co−O2 species was demonstrated by the oxidation of the O−H bond of TEMPO−H (2,2,6,6-tetramethylpiperidin-1-ol) via a H atom abstraction process. Unlike the known Co(cyclam), Co{i-N4} can be employed in oxygen atom transfer reactions oxidizing triphenylphosphine to the corresponding phosphine oxide highlighting the impact of geometrical modifications of the ligand while preserving the ring size and donor atom set on the reactivity of biomimetic oxygen activating complexes. 相似文献
8.
Kaoru Honda Jaeheung Cho Prof. Dr. Takahiro Matsumoto Dr. Jungyun Roh Hideki Furutachi Dr. Takehiko Tosha Dr. Minoru Kubo Dr. Shuhei Fujinami Prof. Takashi Ogura Prof. Teizo Kitagawa Prof. Masatatsu Suzuki Prof. 《Angewandte Chemie (International ed. in English)》2009,48(18):3304-3307
In the nick(el) of time : Bis(μ‐oxo) dinickel(III) complexes 2 (see scheme), generated in the reaction of 1 with H2O2, are capable of hydroxylating the xylyl linker of the supporting ligand to give 3 . Kinetic studies reveal that hydroxylation proceeds by electrophilic aromatic substitution. The lower reactivity than the corresponding μ‐η2:η2‐peroxo dicopper(II) complexes can be attributed to unfavorable entropy effects.
9.
Mechanistic Insight into Peroxo‐Shunt Formation of Biomimetic Models for Compound II,Their Reactivity toward Organic Substrates,and the Influence of N‐Methylimidazole Axial Ligation 下载免费PDF全文
Maria Oszajca Agnieszka Drzewiecka‐Matuszek Dr. Alicja Franke Dr. Dorota Rutkowska‐Zbik Dr. Małgorzata Brindell Prof. Małgorzata Witko Prof. Grażyna Stochel Prof. Rudi van Eldik 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(8):2328-2343
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates. 相似文献
10.
Yaeun Kang Hui Chen Dr. Yu Jin Jeong Wenzhen Lai Dr. Eun Hae Bae Sason Shaik Prof. Dr. Wonwoo Nam Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(39):10039-10046
The proximal axial ligand in heme iron enzymes plays an important role in tuning the reactivities of iron(IV)‐oxo porphyrin π‐cation radicals in oxidation reactions. The present study reports the effects of axial ligands in olefin epoxidation, aromatic hydroxylation, alcohol oxidation, and alkane hydroxylation, by [(tmp)+. FeIV(O)(p‐Y‐PyO)]+ ( 1 ‐Y) (tmp=meso‐tetramesitylporphyrin, p‐Y‐PyO=para‐substituted pyridine N‐oxides, and Y=OCH3, CH3, H, Cl). In all of the oxidation reactions, the reactivities of 1 ‐Y are found to follow the order 1 ‐OCH3 > 1 ‐CH3 > 1 ‐H > 1 ‐Cl; negative Hammett ρ values of ?1.4 to ?2.7 were obtained by plotting the reaction rates against the σp values of the substituents of p‐Y‐PyO. These results, as well as previous ones on the effect of anionic nucleophiles, show that iron(IV)‐oxo porphyrin π‐cation radicals bearing electron‐donating axial ligands are more reactive in oxo‐transfer and hydrogen‐atom abstraction reactions. These results are counterintuitive since iron(IV)‐oxo porphyrin π‐cation radicals are electrophilic species. Theoretical calculations of anionic and neutral ligands reproduced the counterintuitive experimental findings and elucidated the root cause of the axial ligand effects. Thus, in the case of anionic ligands, as the ligand becomes a better electron donor, it strengthens the FeO? H bond and thereby enhances its H‐abstraction activity. In addition, it weakens the Fe?O bond and encourages oxo‐transfer reactivity. Both are Bell–Evans–Polanyi effects, however, in a series of neutral ligands like p‐Y‐PyO, there is a relatively weak trend that appears to originate in two‐state reactivity (TSR). This combination of experiment and theory enabled us to elucidate the factors that control the reactivity patterns of iron(IV)‐oxo porphyrin π‐cation radicals in oxidation reactions and to resolve an enigmatic and fundamental problem. 相似文献
11.
Natalya Hessenauer‐Ilicheva Alicja Franke Dr. Dominik Meyer Wolf‐D. Woggon Prof. Dr. Rudi van Eldik Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(12):2941-2959
Two new models for cytochrome P450 in which the thiolate axial ligand is replaced by an RSO3? group, form oxo‐iron(IV) porphyrin π‐cation radicals as sole oxidation products in “peroxo shunt” reactions (see scheme) independent of the nature of the employed solvent (polar or non‐polar) and electronic nature of the porphyrin rings.
12.
二甲胺基尾式卟啉铁的轴向配位状态 总被引:3,自引:0,他引:3
利用UV、MCD、Raman、EPR、Mssbauer、循环伏安等手段,研究了新型尾式卟啉铁-氯化中位一[邻-(4-二甲胺基丁酰胺基)苯基]三苯基卟啉合铁配合物不同价态下的轴向配位状态和它与含N碱及小分子CO、NO的轴向加合性质。结果表明:尾式卟啉铁(Ⅲ)呈现五配位高自旋(S=5/2)状态:尾端叔胺N不能与中心离子铁(Ⅲ)配位,而可以与铁(Ⅱ)生成五配位低自旋配合物。 相似文献
13.
14.
Christoph Fertinger Natalya Hessenauer‐Ilicheva Dr. Alicja Franke Dr. Rudi van Eldik Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(48):13435-13440
The iron(III) meso‐tetramesitylporphyrin complex is a good biomimetic to study the catalytic reactions of cytochrome P450. All of the three most discussed reactive intermediates concerning P450 catalysis (namely, Cpd 0, Cpd I, and Cpd II) can be selectively produced, identified, and stabilized for many minutes in solution at low temperature by choosing appropriate reaction conditions. In this way, their reactivity against various substrates was determined by utilizing low‐temperature rapid‐scan UV/Vis spectroscopy. Since all reactive intermediates are derived from a single model complex, the results of these kinetic measurements provide for the first time a full comparability of the determined rate constants for the three intermediates. The rate constants reveal a significant dependence of the reactivity on the type of reaction (e.g., oxygenation, hydrogen abstraction, or hydride transfer), which closely correlates with the chemical nature of Cpds 0, I, and II. The detailed knowledge of the reactivity of these intermediates provides a valuable tool to evaluate their particular role in biological systems. 相似文献
15.
Min Young Hyun Young Dan Jo Jun Ho Lee Hong Gyu Lee Hyun Min Park In Hong Hwang Kyeong Beom Kim Prof. Suk Joong Lee Prof. Cheal Kim 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(5):1810-1818
The participation of multiple active oxidants generated from the reactions of two manganese(III) porphyrin complexes containing electron‐withdrawing and ‐donating substituents with peroxyphenylacetic acid (PPAA) as a mechanistic probe was studied by carrying out catalytic oxidations of cyclohexene, 1‐octene, and ethylbenzene in various solvent systems, namely, toluene, CH2Cl2, CH3CN, and H2O/CH3CN (1:4). With an increase in the concentration of the easy‐to‐oxidize substrate cyclohexene in the presence of [(TMP)MnCl] ( 1 a ) with electron‐donating substituents, the ratio of heterolysis to homolysis increased gradually in all solvent systems, suggesting that [(TMP)Mn? OOC(O)R] species 2 a is the major active species. When the substrate was changed from the easy‐to‐oxidize one (cyclohexene) to difficult‐to‐oxidize ones (1‐octene and ethylbenzene), the ratio of heterolysis to homolysis increased a little or did not change. [(F20TPP)Mn? OOC(O)R] species 2 b generated from the reaction of [(F20TPP)MnCl] ( 1 b ) with electron‐withdrawing substituents and PPAA also gradually becomes involved in olefin epoxidation (although to a much lesser degree than with [(TMP)Mn? OOR] 2 a ) depending on the concentration of the easy‐to‐oxidize substrate cyclohexene in all aprotic solvent systems except for CH3CN, whereas MnV?O species is the major active oxidant in the protic solvent system. With difficult‐to‐oxidize substrates, the ratio of heterolysis to homolysis did not vary except for 1‐octene in toluene, indicating that a MnV?O intermediate generated from the heterolytic cleavage of 2 b becomes a major reactive species. We also studied the competitive epoxidations of cis‐2‐octene and trans‐2‐octene with two manganese(III) porphyrin complexes by meta‐chloroperbenzoic acid (MCPBA) in various solvents under catalytic reaction conditions. The ratios of cis‐ to trans‐2‐octene oxide formed in the reactions of MCPBA varied depending on the substrate concentration, further supporting the contention that the reactions of manganese porphyrin complexes with peracids generate multiple reactive oxidizing intermediates. 相似文献
16.
Yong‐Min Lee Dr. Sunder N. Dhuri Dr. Sarvesh C. Sawant Dr. Jaeheung Cho Dr. Minoru Kubo Dr. Takashi Ogura Prof. Dr. Shunichi Fukuzumi Prof. Dr. Wonwoo Nam Prof. Dr. 《Angewandte Chemie (International ed. in English)》2009,48(10):1803-1806
Give me an “O”! Mononuclear nonheme iron(IV) oxo complexes have been generated using water as an oxygen source and cerium(IV) as an oxidant. The high‐yield oxygenation of organic substrates in this system (see picture, Fe green, O red, N blue, C gray) is catalyzed by iron(II) complexes. The source of oxygen in the iron(IV) oxo complexes and the oxygenated products has been assigned unambiguously by isotopic labeling experiments.
17.
Iron 10‐Thiacorroles: Bioinspired Iron(III) Complexes with an Intermediate Spin (S=3/2) Ground State 下载免费PDF全文
Dimitri Sakow Dr. Dirk Baabe Birte Böker Dr. Olaf Burghaus Dr. Markus Funk Dr. Christian Kleeberg Dr. Dirk Menzel Clemens Pietzonka Prof. Dr. Martin Bröring 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(10):2913-2924
A first systematic study upon the preparation and exploration of a series of iron 10‐thiacorroles with simple halogenido (F, Cl, Br, I), pseudo‐halogenido (N3, I3) and solvent‐derived axial ligands (DMSO, pyridine) is reported. The compounds were prepared from the free‐base octaethyl‐10‐thiacorrole by iron insertion and subsequent ligand‐exchange reactions. The small N4 cavity of the ring‐contracted porphyrinoid results in an intermediate spin (i.s., S=3/2) state as the ground state for the iron(III) ion. In most of the investigated cases, the i.s. state is found unperturbed and independent of temperature, as determined by a combination of X‐ray crystallography and magnetometry with 1H NMR‐, EPR‐, and Mössbauer spectroscopy. Two exceptions were found. The fluorido iron(III) complex is inhomogenous in the solid and contains a thermal i.s. (S=3/2)→high spin (h.s., S=5/2) crossover fraction. On the other side, the cationic bis(pyridine) complex resides in the expected low spin (l.s., S=1/2) state. Chemically, the iron 10‐thiacorroles differ from the iron porphyrins mainly by weaker axial ligand binding and by a cathodic shift of the redox potentials. These features make the 10‐thiacorroles interesting ligands for future research on biomimetic catalysts and model systems for unusual heme protein active sites. 相似文献
18.
Demonstration of the Heterolytic OO Bond Cleavage of Putative Nonheme Iron(II)OOH(R) Complexes for Fenton and Enzymatic Reactions 下载免费PDF全文
Suhee Bang Sora Park Dr. Yong‐Min Lee Dr. Seungwoo Hong Dr. Kyung‐Bin Cho Prof. Dr. Wonwoo Nam 《Angewandte Chemie (International ed. in English)》2014,53(30):7843-7847
One‐electron reduction of mononuclear nonheme iron(III) hydroperoxo (FeIII? OOH) and iron(III) alkylperoxo (FeIII? OOR) complexes by ferrocene (Fc) derivatives resulted in the formation of the corresponding iron(IV) oxo complexes. The conversion rates were dependent on the concentration and oxidation potentials of the electron donors, thus indicating that the reduction of the iron(III) (hydro/alkyl)peroxo complexes to their one‐electron reduced iron(II) (hydro/alkyl)peroxo species is the rate‐determining step, followed by the heterolytic O? O bond cleavage of the putative iron(II) (hydro/alkyl)peroxo species to give the iron(IV) oxo complexes. Product analysis supported the heterolytic O? O bond‐cleavage mechanism. The present results provide the first example showing the one‐electron reduction of iron(III) (hydro/alkyl)peroxo complexes and the heterolytic O? O bond cleavage of iron(II) (hydro/alkyl)peroxo species to form iron(IV) oxo intermediates which occur in nonheme iron enzymatic and Fenton reactions. 相似文献
19.
Alicja Franke Dr. Maria Wolak Dr. Rudi van Eldik Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(39):10182-10198
The present study focuses on the oxidation of the water‐soluble and water‐insoluble iron(III)–porphyrin complexes [FeIII(TMPS)] and [FeIII(TMP)] (TMPS=meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphyrinato, TMP=meso‐tetrakis(2,4,6‐trimethylphenyl)porphyrinato), respectively, by meta‐chloroperoxybenzoic acid (m‐CPBA) in aqueous methanol and aqueous acetonitrile solutions of varying acidity. With the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique, the complete spectral changes that accompany the formation and decomposition of the primary product of O? O bond cleavage in the acylperoxoiron(III)–porphyrin intermediate [(P)FeIII? OOX] (P=porphyrin) were successfully recorded and characterized. The results clearly indicate that the O? O bond in m‐CPBA is heterolytically cleaved by the studied iron(III)–porphyrin complexes independent of the acidity of the reaction medium. The existence of two different oxidation products under acidic and basic conditions is suggested not to be the result of a mechanistic changeover in the mode of O? O bond cleavage on going from low to high pH values, but rather the effect of environmental changes on the actual product of the O? O bond cleavage in [(P)FeIII? OOX]. The oxoiron(IV)–porphyrin cation radical formed as a primary oxidation product over the entire pH range can undergo a one‐ or two‐electron reduction depending on the selected reaction conditions. The present study provides valuable information for the interpretation and improved understanding of results obtained in product‐analysis experiments. 相似文献
20.
Santanu Pattanayak Dr. Fabián G. Cantú Reinhard Dr. Atanu Rana Dr. Sayam Sen Gupta Dr. Sam P. de Visser 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(34):8092-8104
High-valent metal oxo oxidants are common catalytic-cycle intermediates in enzymes and known to be highly reactive. To understand which features of these oxidants affect their reactivity, a series of biomimetic iron(V) oxo oxidants with peripherally substituted biuret-modified tetraamido macrocyclic ligands were synthesized and characterized. Major shifts in the UV/Vis absorption as a result of replacing a group in the equatorial plane of the iron(V) oxo species were found. Further characterization by EPR spectroscopy, ESI-MS, and resonance Raman spectroscopy revealed differences in structure and the electronic configuration of these complexes. A systematic reactivity study with a range of substrates was performed and showed that the reactions are affected by electron-withdrawing substituents in the equatorial ligand, which enhance the reaction rate by almost 1016 orders of magnitude. Thus, the long-range electrostatic perturbations have a major influence on the rate constant. Finally, computational studies identified the various electronic contributions to the rate-determining reaction step and explained how the equatorial ligand periphery affects the properties of the oxidant. 相似文献