首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Herein we report a polymerase chain reaction (PCR)-free electrochemiluminescence (ECL) approach that uses ECL nanoprobes for the determination of cancer cells with high sensitivity. The ECL nanoprobe consists of gold nanoparticles (AuNPs), linker DNA, and tris(2,2'-bipyridyl)ruthenium (TBR)-labeled signal DNA. The linker DNA and signal DNA were modified on the surface of the AuNPs through Au-S bonds. The linker DNA can partly hybridize with the aptamers of cancer cells loaded onto the magnetic beads (MB1) to construct the magnetic biocomplexes. In the presence of the cancer cells, the aptamers conjugated with the cancer cells with higher affinity. The ECL nanoprobe was released from the biocomplexes and subsequently hybridized with the capture DNA loaded onto another magnetic bead (MB2) to form the magnetic nanocomposite. The nanocomposites can be easily separated and firmly attached to an electrode on account of their excellent magnetic properties. The ECL intensity of the TBR loaded onto the nanocomposites directly reflected the amount of cancer cells. By using cell lines of Burkitt's lymphoma (Ramos cells) as a model, the ECL response was proportional to the cell concentration in the range from 5 to 100 cells ml(-1); a limit of detection as low as 5 cells ml(-1) of Ramos cells could be achieved. The proposed method described here is ideal for the diagnosis of cancers due to its high sensitivity, simplicity, and low cost.  相似文献   

2.
Anodic electrochemiluminescence (ECL) of 3‐mercaptopropionic acid (MPA)‐ capped CdTe/CdS core‐shell quantum dots (QDs) with tripropylamine (TPrA) as the co‐reactant were studied in aqueous (Tris buffer) solution for the first time. The results suggest that the oxidation of TPrA at a glassy carbon electrode (GCE) surface participated in the ECL of QDs, and the onset potential and the intensity of ECL of CdTe/CdS QDs were affected seriously by TPrA, as the co‐reactant, in Tris buffer solution. The onset potential of ECL in this new system was about +0.5 V (vs. Ag/AgCl) and the ECL intensity greatly enhanced when TPrA was present. Various influencing factors, such as the electrolyte, pH, QDs concentration, potential range and scan rates on the ECL were studied. Based on the selective quenching by Cu2+ to the light emission from CdTe/CdS QDs/TPrA system, a highly sensitive and selective method for the determination of Cu2+ was developed. At the optimal conditions, the relative ECL intensity, I0/I, was proportional to the concentration of Cu2+ from 14 nM to 0.21 μM with the detection limit of 6.1 nM based on the signal‐to‐noise ratio of 3. The possible ECL mechanism of QDs and the quenching mechanism of ECL were proposed.  相似文献   

3.
Magnetic electrochemiluminescent Fe3O4/CdSe–CdS nanoparticle/polyelectrolyte nanostructures have been synthesized and used to fabricate an electrochemiluminescence (ECL) immunosensor for the detection of carcinoembryonic antigen (CEA). CEA is a protein used as a biomarker for several cancers; particularly, to monitor response to treatment in colon and rectal cancer patients. The nanocomposites can be easily separated and firmly attached to an electrode owing to their excellent magnetic properties. This represents a promising advantage for bioassay applications. More importantly, the nanostructures exhibit intense and stable ECL emissions in neutral solution, which makes them ideal for ECL immunosensing. The 3‐aminopropyltriethoxysilane (APS) polyelectrolyte shell on the nanostructure surface not only enhances the intensity and stability of the ECL signal, but also acts as a crosslinker for immunosensor fabrication. A CEA antibody immobilized onto a nanocomposite/APS/electrode with gold nanoparticles comprises the ECL immunosensor. The principle of ECL detection for CEA is based on a change in steric hindrance after immunoreaction, which leads to a decrease in ECL intensity. A wide detection range (0.064 pg ml?1–10 ng ml?1) and low detection limit (0.032 pg ml?1) are achieved. The immunosensor is highly sensitive and selective, and exhibits excellent stability and good reproducibility. It thus has great potential for clinical protein detection. In particular, this approach uses a novel class of bifunctional nanocomposites that display both intense ECL and excellent magnetism, which renders them suitable for a large range of bioassay applications.  相似文献   

4.
The electrochemical and electrochemiluminescence (ECL) detection of cell lines of Burkitt’s lymphoma (Ramos) by using magnetic beads as the separation tool and high‐affinity DNA aptamers for signal recognition is reported. Au nanoparticles (NPs) bifunctionalized with aptamers and CdS NPs were used for electrochemical signal amplification. The anodic stripping voltammetry technology employed for the analysis of cadmium ions dissolved from CdS NPs on the aggregates provided a means to quantify the amount of the target cells. This electrochemical method could respond down to 67 cancer cells per mL with a linear calibration range from 1.0×102 to 1.0×105 cells mL?1, which shows very high sensitivity. In addition, the assay was able to differentiate between target and control cells based on the aptamer used in the assay, indicating the wide applicability of the assay for diseased cell detection. ECL detection was also performed by functionalizing the signal DNA, which was complementary to the aptamer of the Ramos cells, with tris(2,2‐bipyridyl) ruthenium. The ECL intensity of the signal DNA, replaced by the target cells from the ECL probes, directly reflected the quantity of the amount of the cells. With the use of the developed ECL probe, a limit of detection as low as 89 Ramos cells per mL could be achieved. The proposed methods based on electrochemical and ECL should have wide applications in the diagnosis of cancers due to their high sensitivity, simplicity, and low cost.  相似文献   

5.
Guo W  Yuan J  Li B  Du Y  Ying E  Wang E 《The Analyst》2008,133(9):1209-1213
A unique multilabeling at a single-site protocol of the Ru(bpy)(3)(2+) electrochemiluminescence (ECL) system is proposed. Nanoparticles (NPs) were used as assembly substrates to enrich ECL co-reactants of Ru(bpy)(3)(2+) to construct nanoscale-enhanced ECL labels. Two different kinds of NP substrates [including semiconductor NPs (CdTe) and noble metal NPs (gold)] capped with 2-(dimethylamino)ethanethiol (DMAET) [a tertiary amine derivative which is believed to be one of the most efficient of co-reactants of the Ru(bpy)(3)(2+) system] were synthesized through a simple one-pot synthesis method in aqueous media. Although both CdTe and gold NPs realized the enrichment of ECL co-reactants, they presented entirely different ECL performances as nanoscale ECL co-reactants of Ru(bpy)(3)(2+). The different effects of these two NPs on the ECL of Ru(bpy)(3)(2+) were studied. DMAET-capped CdTe NPs showed enormous signal amplification of Ru(bpy)(3)(2+) ECL, whereas DMAET-capped gold NPs showed a slight quenching effect of the ECL signal. DMAET-capped CdTe NPs can be considered to be excellent nanoscale ECL labels of the Ru(bpy)(3)(2+) system, as even a NP solution sample of 10(-18) M was still detectable after an electrostatic self-assembly concentration process. DMAET-capped CdTe NPs were further applied in the construction of aptamer-based biosensing system for proteins and encouraging results were obtained.  相似文献   

6.
Xuan Liu 《Talanta》2009,78(3):691-1606
A novel method for electrochemiluminescent (ECL) detection of nitrite was proposed based on its quenching effect on anodic ECL emission of CdSe quantum dots (QDs). The ECL emission could be greatly enhanced by sulfite and dissolved oxygen in a neutral system and occurred at a relatively low potential in comparison with traditional anodic ECL emitter, leading to high sensitivity and good selectivity. The quenching mechanism followed an “electrochemical oxidation inhibition” process, which was completely different from those of some analytes on the ECL emission of QDs. The coincidence of photoluminescence and ECL spectra of the QDs indicated that the ECL emission resulted from the redox process of QDs core and the sulfite acted as a coreactant. The nitrite quenched ECL emission could be analyzed according to the treatment of Stern-Volmer equation with a linear range from 1 μM to 0.5 mM for detection of nitrite. This work presented a new efficient ECL methodology for quencher-related detection.  相似文献   

7.
A novel sandwich‐type electrochemiluminescence (ECL) immunosensor was developed to enable the sensitive detection of HIV‐1 antibodies. This system incorporated mesoporous silica (mSiO2) complexed with quantum dots (QDs) and nano‐gold particles, which were assembled to enhance signal detection. Magnetic beads were used by immobilizing the secondary anti‐IgG antibody. This was first employed to capture HIV‐1 antibody (Ab) to form a Fe3O4/anti‐IgG/Ab complex. A high loading and signal‐enhanced nanocomposite (hereafter referred to as Au‐mSiO2‐CdTe) was used as a HIV‐1 antigen label. The Au‐mSiO2‐CdTe nanocomposite was conjugated with the Fe3O4/anti‐IgG/Ab complex to form an immunocomplex (hereafter referred to as Fe3O4/anti‐IgG/Ab/HIV‐1/CdTe‐mSiO2‐Au). This complex could be further separated by an external magnetic field to produce ECL signals. Due to the large specific surface area and pore volume of mSiO2, the loading of the CdTe QDs was markedly increased. Thus, the loaded QDs released a powerful chemiluminescent signal with a concordantly increased sensitivity of the immunosensor. The immunosensor was highly sensitive, and displayed a linear range of responses for HIV‐1 antibody across a dilution range of 1 : 1500 through 1 : 50 with the detection limit of 1 : 4500. The immunoassay can be a promising candidate in early diagnosis of HIV infection.  相似文献   

8.
通过牛血清蛋白(BSA)对二氧化硅纳米颗粒(SiO2 NPs)表面进行氨基、 巯基功能化, 随后以BSA同时作为模板和还原剂, 原位生成银纳米簇(Ag NCs), 获得显著增强阴极电化学发光(ECL)信号的Ag NCs-SiO2 NPs复合纳米材料. 结果表明, 当测试溶液中含有L-半胱氨酸(L-Cys)时, 其与传感界面上的Ag NCs发生共价结合作用, 从而猝灭其ECL信号. 基于该原理, 构建了“开-关”型ECL信号响应模式的L-Cys生物传感器. 该传感器检测L-Cys的浓度范围为50 nmol/L~50 μmol/L, 最低检测限达到13.7 nmol/L, 能够实现L-Cys的高灵敏及特异性分析, 有望在生物、 医学等领域得到广泛应用.  相似文献   

9.
成功制备了由L-半胱氨酸和CdTe量子点作为修饰材料的电化学传感器并用于水体中Pb~(2+)的检测。巯基丙酸修饰的CdTe量子点通过水相合成,表面含有大量羧基,与L-半胱氨酸表面的氨基形成酰胺键,修饰于金电极表面。通过荧光分光光度计、透射电子显微镜、红外光谱、X射线衍射对L-Cys/CdTe QDs复合材料进行表征。采用循环伏安法(CV)研究了L-Cys/CdTe QDs修饰成分在金电极上的电化学性能及CdTe量子点的最佳自组装时间。采用差分脉冲溶出伏安法(DPSV)研究了铅离子在修饰电极上的电化学行为。在优化实验条件下,Pb~(2+)浓度在1.0×10~(-6)~1.0×10~(-2) mol/L范围内与其峰电流呈良好的线性关系,相关系数(r2)为0.993 8,检出限(3σ,n=5)为4.0×10~(-7) mol/L。该传感器具有良好的重现性和稳定性,有望用于实际水样中铅离子的检测。  相似文献   

10.
《Electroanalysis》2017,29(9):2098-2105
An ultrasensitive electrochemiluminescence (ECL) immunosensor for the detection of tetrodotoxin (TTX) is proposed, which are composed of the branched poly‐(ethylenimine) (BPEI) functionalized graphene (BGNs)/Fe3O4‐Au magnetic capture probes and luminol‐capped gold nanocomposites (luminol‐AuNPs) as the signal tag. Herein, a typical sandwich immunecomplex was constructed on the glassy carbon electrode. The BGNs/Fe3O4‐Au hybrids could efficiently conjugate primary antibody via the Au−S chemical bonds or Au−N chemical bonds and rapidly separate under external magnetic field. The introduction of BPEI to GO could enhance the luminol‐ECL intensity. Meanwhile, the multifunctional nanocomposites have been proved with good water‐solubility, excellent electron transfer, outstanding stability, etc. The luminescent luminol‐AuNPs, a high efficient electrochemiluminescence marker, can be assembled on the second antibody, which can produce the ECL signal to achieve the determination of TTX. This proposed ECL immunosensor with a linear range from 0.01–100 ng/mL can be applied in the detection of TTX in real samples with satisfactory results.  相似文献   

11.
For the first time, we report a sensitive and selective method to detect Cu2+ based on the electrochemiluminescence quenching of CdTe quantum dots (QDs) in aqueous solution. The mercaptosuccinic acid (MSA) protected CdTe QDs were prepared and characterized with UV, fluorescence and ECL. The anodic ECL quenching mechanism was attributed to the fact that MSA capping was removed from the surface of the CdTe QDs and preferentially bound with Cu2+. The displacement of MSA capping layer created imperfections on the CdTe QDs surface, and eventually led to the ECL quenching. The quenching effect of Cu2+ on the anodic ECL of CdTe QDs was found to be selective and concentration dependent, so we applied it to develop a method for the sensitive and selective detection of Cu2+. With the proposed method, the concentration of Cu2+ could be detected in the range of sub-nanomolar to micromolar levels.  相似文献   

12.
Bidentate chelation, meso‐2,3‐dimercaptosuccinic acid (DMSA), was used as a stabilizer for the synthesis of CdTe quantum dots (QDs). The bidentate chelate QDs, characterized with FT‐IR, PL, and UV/Vis spectroscopy; element analysis; and high‐resolution transmission electron microscope, exhibited surface traps due to the large surface/volume ratio of QD particle and the steric hindrance of the DMSA molecule. The unpassivated surface of the QDs produced a narrower band gap than the core and electrochemiluminescent (ECL) emission at relatively low cathodic potential. In air‐saturated pH 7.0 buffer, the QDs immobilized on electrode surface showed an intense ECL emission peak at ?0.85 V (vs. Ag/AgCl). H2O2 produced from electrochemical reduction of dissolved oxygen was demonstrated to be the co‐reactant, which avoided the need of strong oxidant as the co‐reactant and produced a sensitive analytical method for peroxidase‐related analytes. Using hydroquinone/horseradish peroxidase/H2O2 as a model system, a new, reagentless, phenolic, ECL biosensor for hydroquinone was constructed, based on the quenching effect of ECL emission of QDs by consumption of co‐reactant H2O2. The biosensor showed a linear range of 0.2–10 μM with acceptable stability and reproducibility. This work opens new avenues in the search for new ECL emitters with excellent analytical performance and makes QDs a more attractive alternative in biosensing.  相似文献   

13.
In this study, two types of magnetic polyurethane (PU) elastomer nanocomposites using polycaprolactone (PCL) and polytetramethylene glycol (PTMG) as polyols were synthesized by incorporating thiodiglycolic acid surface modified Fe3O4 nanoparticles (TSM‐Fe3O4) into PU matrices through in situ polymerization method. TSM‐Fe3O4 nanoparticles were prepared using in situ coprecipitation method in alkali media and were characterized by X‐ray diffraction, Fourier Transform Infrared Spectrophotometer, Transmission Electron Microscopy, and Vibrating Sample Magnetometer. The effects of PCL and PTMG polyols on the properties of the resultant PUs were studied. The morphology and dispersion of the nanoparticles in the magnetic nanocomposites were studied by Scanning Electron Microscope. It was observed that dispersion of nanoparticles in PTMG‐based magnetic nanocomposite was better than PCL‐based magnetic nanocomposite. Furthermore, the effect of polyol structure on thermal and mechanical properties of nanocomposite was investigated by Thermogravimetric Analysis and Dynamic Mechanical Thermal Analysis. A decrease in the thermal stability of magnetic nanocomposites was found compared to pure PUs. Furthermore, DMTA results showed that increase in glass transition temperature of PTMG‐based magnetic nanocomposite is higher than PCL‐based magnetic nanocomposite, which is attributed to better dispersion of TSM‐Fe3O4 nanoparticles in PTMG‐based PU matrix. Additionally, magnetic nanocomposites exhibited a lower level of hydrophilicity compared to pure PUs. These observations were attributed to the hydrophobic behavior of TSM‐Fe3O4 nanoparticles. Moreover, study of fibroblast cells interaction with magnetic nanocomposites showed that the products can be a good candidate for biomedical application. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid and ultrasensitive electrochemiluminescence (ECL) competitive immunoassay based on CdSe quantum dots (QDs) and the shorter chain as possible (cysteamine and glutaraldehyde) has been designed for the detection of salbutamol (SAL). Cysteamine and glutaraldehyde made coating antigen immobilize well on the gold electrode surface through the reaction between functional groups, which brought about the simplicity of the immunosensor to some extent. Transmission electron microscopy image, dynamic light scattering, photoluminescence, ultraviolet‐visible absorption and electrochemical impedance spectra were used to characterize the prepared CdSe QDs and the cysteamine/glutaraldehyde/Ovalbumin‐SAL/anti‐SAL‐QDs immunosensor. In the air‐saturated PBS buffer containing 0.1 M K2S2O8 and 0.1 M KCl (pH 9.0), a strong ECL emission of QDs can be observed which depended linearly on the logarithm of the salbutamol concentration with a wide range from 0.05 ng mL?1 to 100 ng mL?1, and a detection limit of 0.0056 ng mL?1. The sensitivity, repeatability, and specificity of the ECL immunosensor have been evaluated. The sensor has been applied to real samples with satisfactory results. This work will open new ways of detecting food additive residue based on QDs ECL in immunoassays.  相似文献   

15.
Phosphate anions are determined based on the electrochemiluminescence (ECL) of CdSe quantum dots (CdSe QDs) capped with 3‐mercaptopropionic acid. The ECL gets quenched with the introduction of Eu3+ ions, but it is restored on the further addition of phosphate anions. The sensing mechanism might be due to the strong and specific interaction between phosphate anions and the Eu3+ ions, leading to the releasing of CdSe QDs from aggregates. On the basis of the quenching/recovery ECL behaviors, the ECL sensor offer acceptable sensitivity, high selectivity, and a linear response from 0.1 to 120 µM with a detection limit of 0.03 µM (3δ) for phosphate anions.  相似文献   

16.
Tian CY  Zhao WW  Wang J  Xu JJ  Chen HY 《The Analyst》2012,137(13):3070-3075
This work reports an ECL immunoassay method for ultrasensitive detection of prostate protein antigen (PSA), by remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from the CdS nanoparticles (NPs) sensitized TiO(2) nanotube array (CdS-TiO(2) NTs) to the activated CdTe NPs functionalized multi-wall carbon nanotubes (CdTe-MWNTs) composite. The coupling of TiO(2) and CdS NPs results in a cathodic ECL intensity 14.7 times stronger than that of the pure TiO(2) NTs electrode, which could be efficiently quenched by the CdTe-MWNTs. The enhanced mechanism of TiO(2) NTs ECL by CdS NPs was studied in detail by cyclic voltammetry and ECL spectroscopy. The strong absorption of the CdTe-MWNTs in the wavelength range of 400-800 nm renders them highly efficient for ECL quenching labeled on anti-PSA antibody. Based on a sandwich structure, we developed an ECL immunoassay method for the sensitive and selective detection of PSA. The ECL intensity decrement was logarithmically related to the concentration of the PSA in the range of 1.0 fg mL(-1) to 10 pg mL(-1) with a detection limit of 1 fg mL(-1). Human serum samples were then tested using the proposed immunoassay with excellent correlations, suggesting that the proposed immunoassay method is of great promise in clinical screening of cancer biomarkers.  相似文献   

17.
The electrochemiluminescence (ECL) aptasensor was prepared for the detection of Mucin 1 based on its specific recognition by aptamer immobilized on multi‐functionalized graphene oxide nanocomposite, which was prepared with N‐(4‐aminobutyl)‐N‐ethylisoluminol (ABEI) and aptamer chemically bound to the surface of magnetic GO (nanoFe3O4@GO). ABEI and aptamer acted as the electrochemiluminophore and the capture device for Mucin 1 respectively. NanoFe3O4@GO brought multi‐functionalized graphene oxide nanocomposite attracted on the surface of magnetic glass carbon electrode through magnetism, enabled all the ABEI immobilized electrochemically active due to its good conductivity and thus then facilitated the sensitive detection of Mucin 1. In addition, the ECL aptasensor can be prepared through a one‐step process. Under optimal conditions, the ECL intensity of the aptasensor decreased proportionally to the logarithmic concentrations of Mucin 1 in the range of 0.005–1000 ng mL?1. This aptasensor displays good specificity, stability, reproducibility and application. This method has a large potential because such a multi‐functionalized graphene oxide nanocomposite also may be applied to other ECL‐based aptasensors.  相似文献   

18.
A magnetic, sensitive, and selective fluorescence resonance energy transfer (FRET) probe for detection of thiols in living cells was designed and prepared. The FRET probe consists of an Fe(3)O(4) core, a green-luminescent phenol formaldehyde resin (PFR) shell, and Au nanoparticles (NPs) as FRET quenching agent on the surface of the PFR shell. The Fe(3)O(4) NPs were used as the core and coated with green-luminescent PFR nanoshells by a simple hydrothermal approach. Au NPs were then loaded onto the surface of the PFR shell by electric charge absorption between Fe(3)O(4)@PFR and Au NPs after modifying the Fe(3)O(4)@PFR nanocomposites with polymers to alter the charge of the PFR shell. Thus, a FRET probe can be designed on the basis of the quenching effect of Au NPs on the fluorescence of Fe(3)O(4)@PFR nanocomposites. This magnetic and sensitive FRET probe was used to detect three kinds of primary biological thiols (glutathione, homocysteine, and cysteine) in cells. Such a multifunctional fluorescent probe shows advantages of strong magnetism for sample separation, sensitive response for sample detection, and low toxicity without injury to cellular components.  相似文献   

19.
We design well‐defined metal‐semiconductor nanostructures using thiol‐functionalized CdTe quantum dots (QDs)/quantum rods (QRs) with bovine serum albumin (BSA) protein‐conjugated Au nanoparticles (NPs)/nanorods (NRs) in aqueous solution. The main focus of this article is to address the impacts of size and shape on the photophysical properties, including radiative and nonradiative decay processes and energy transfers, of Au‐CdTe hybrid nanostructures. The red shifting of the plasmonic band and the strong photoluminescence (PL) quenching reveal a strong interaction between plasmons and excitons in these Au‐CdTe hybrid nanostructures. The PL quenching of CdTe QDs varies from 40 to 86 % by changing the size and shape of the Au NPs. The radiative as well as the nonradiative decay rates of the CdTe QDs/QRs are found to be affected in the presence of both Au NPs and NRs. A significant change in the nonradiative decay rate from 4.72×106 to 3.92×1010 s?1 is obtained for Au NR‐conjugated CdTe QDs. It is seen that the sizes and shapes of the Au NPs have a pronounced effect on the distance‐dependent energy transfer. Such metal‐semiconductor hybrid nanostructures should have great potentials for nonlinear optical properties, photovoltaic devices, and chemical sensors.  相似文献   

20.
The nanocomposites consisted of polymer and nanoparticles (NPs) have been regarded as one of core materials in the nanotechnology. From the practical viewpoint, the heat treatment is often required in many nanocomposite fabrication processes. However, some NPs such as gold NPs exhibit the low thermal stability due to the dissociation of ligands from the nanoparticle surface at elevated temperature, limiting their use in many applications. Herein, we provide an overview of the recent efforts in strategies for the design and fabrication of inorganic NPs which have enhanced thermal stability. The recent investigation on the phase behavior of thermally stable NPs within the polymer matrices (polymer blends and block copolymer), morphologies of nanocomposites induced by NPs, and examples of their applications are also discussed. These approaches may provide useful strategy to employ the NPs for the fabrication of nanocomposites in diverse applications especially where heat treatment are required. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号