共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum‐dot‐sensitized solar cells (QDSCs) are a promising low‐cost alternative to existing photovoltaic technologies such as crystalline silicon and thin inorganic films. The absorption spectrum of quantum dots (QDs) can be tailored by controlling their size, and QDs can be produced by low‐cost methods. Nanostructures such as mesoporous films, nanorods, nanowires, nanotubes and nanosheets with high microscopic surface area, redox electrolytes and solid‐state hole conductors are borrowed from standard dye‐sensitized solar cells (DSCs) to fabricate electron conductor/QD monolayer/hole conductor junctions with high optical absorbance. Herein we focus on recent developments in the field of mono‐ and polydisperse QDSCs. Stability issues are adressed, coating methods are presented, performance is reviewed and special emphasis is given to the importance of energy‐level alignment to increase the light to electric power conversion efficiency. 相似文献
2.
Dr. Wei Guo Yihua Shen Dr. Mingxing Wu Dr. Liang Wang Linlin Wang Prof. Tingli Ma 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(25):7862-7868
Low‐cost quantum‐dot sensitized solar cells (QDSSCs) were fabricated by using the earth‐abundant element SnS quantum dot, novel TiC counter electrodes, and the organic disulfide/thiolate (T2/T?) redox couple, and reached an efficiency of 1.03 %. QDSSCs based on I?/I3?, T2/T?, and S2?/Sx2? redox couples were assembled to study the role of the redox couples in the regeneration of sensitizers. Charge‐extraction results reveal the reasons for the difference in JSC in three QDSSCs based on I?/I3?, T2/T?, and S2?/Sx2? redox couples. The catalytic selectivity of TiC and Pt towards T2/T? and I?/I3? redox couples was investigated using Tafel polarization and electrochemical impedance analysis. These results indicated that Pt and TiC show a similar catalytic selectivity for I?/I3?. However, TiC possesses better catalytic activity for T2/T? than for I?/I3?. These results indicate the great potential of transition metal carbide materials and organic redox couples used in QDSSCs. 相似文献
3.
4.
Hosea Tantang Aung Ko Ko Kyaw Yu Zhao Prof. Mary B. Chan‐Park Prof. Alfred Iing Yoong Tok Prof. Zheng Hu Prof. Lain‐Jong Li Prof. Xiao Wei Sun Prof. Qichun Zhang 《化学:亚洲杂志》2012,7(3):541-545
Carbon nanotubes (CNTs) have been widely considered as one of the promising candidates for replacing fluorine‐doped tin oxide (FTO)/platinum (Pt) electrodes to reduce the fabrication cost of dye‐sensitized solar cells (DSSCs). Here, we report that a bilayer transparent film containing N‐doped CNTs (which are highly catalytic) and normal CNTs (which are highly conductive) as a counter electrode in DSSCs results in efficiencies up to 2.18 %, yet still maintains a good transparency with a transmittance of approximately 57 % at 550 nm. 相似文献
5.
6.
Prof. Guiqiang Wang Dr. Juan Zhang Dr. Shuai Kuang Dr. Wei Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(33):11763-11769
A porous graphitic carbon nitride (g‐C3N4)/graphene composite was prepared by a simple hydrothermal method and explored as the counter electrode of dye‐sensitized solar cells (DSCs). The obtained g‐C3N4/graphene composite was characterized by XRD, SEM, TEM, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. The results show that incorporating graphene nanosheets into g‐C3N4 forms a three‐dimensional architecture with a high surface area, porous structure, efficient electron‐transport network, and fast charge‐transfer kinetics at the g‐C3N4/graphene interfaces. These properties result in more electrocatalytic active sites and facilitate electrolyte diffusion and electron transport in the porous framework. As a result, the as‐prepared porous g‐C3N4/graphene composite exhibits an excellent electrocatalytic activity. In I?/I3? redox electrolyte, the charge‐transfer resistance of the porous g‐C3N4/graphene composite electrode is 1.8 Ω cm2, which is much lower than those of individual g‐C3N4 (70.1 Ω cm2) and graphene (32.4 Ω cm2) electrodes. This enhanced electrocatalytic performance is beneficial for improving the photovoltaic performance of DSCs. By employing the porous g‐C3N4/graphene composite as the counter electrode, the DSC achieves a conversion efficiency of 7.13 %. This efficiency is comparable to 7.37 % for a cell with a platinum counter electrode. 相似文献
7.
Well‐Dispersed CoS Nanoparticles on a Functionalized Graphene Nanosheet Surface: A Counter Electrode of Dye‐Sensitized Solar Cells 下载免费PDF全文
Dr. Xiaohuan Miao Prof. Kai Pan Prof. Guofeng Wang Dr. Yongping Liao Dr. Lei Wang Dr. Wei Zhou Dr. Baojiang Jiang Prof. Qingjiang Pan Prof. Guohui Tian 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(2):474-482
With a facile electrophoretic deposition and chemical bath process, CoS nanoparticles have been uniformly dispersed on the surface of the functionalized graphene nanosheets (FGNS). The composite was employed as a counter electrode of dye‐sensitized solar cells (DSSCs), which yielded a power conversion efficiency of 5.54 %. It is found that this efficiency is higher than those of DSSCs based on the non‐uniform CoS nanoparticles on FGNS (4.45 %) and built on the naked CoS nanoparticles (4.79 %). The achieved efficiency of our cost‐effective DSSC is also comparable to that of noble metal Pt‐based DSSC (5.90 %). Our studies have revealed that both the exceptional electrical conductivity of the FGNS and the excellent catalytic activity of the CoS nanoparticles improve the conversion efficiency of the uniformly FGNS‐CoS composite counter electrode. The electrochemical impedance spectra, cyclic voltammetry, and Tafel polarization have evidenced the best catalytic activity and the fastest electron transport. Additionally, the dispersion condition of CoS nanoparticles on FGNS plays an important role for catalytic reduction of I3?. 相似文献
8.
Hierarchically Structured ZnO Nanorods as an Efficient Photoanode for Dye‐Sensitized Solar Cells 下载免费PDF全文
Dr. Wenqin Peng Dr. Liyuan Han Dr. Zhengming Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(27):8483-8487
Hierarchical ZnO nanorods composed of interconnected nanoparticles, which were synthesized by controlling precursor concentrations in a solvothermally assisted process, were exploited as photoanodes in dye‐sensitized solar cells (DSCs). The as‐prepared hierarchical nanorods showed greatly enhanced light scattering compared to ZnO nanoparticles for boosting light harvesting while maintaining sufficient dye‐adsorption capability. The charge‐transfer characteristics were studied by electrochemical impedance measurements, and reduced electron recombination and longer electron lifetime were observed for the ZnO nanorods. Photovoltaic characterization demonstrated that DSCs utilizing the hierarchical nanorods significantly improved the overall conversion efficiency by 34 % compared to nanoparticle‐based DSCs. 相似文献
9.
Junghan Lee Youngseon Choi Dr. Junwon Kim Dr. Eunjung Park Rita Song Dr. 《Chemphyschem》2009,10(5):806-811
Selective DNA detection: The fluorescence, from stable cationic QDs, is quenched by 90% on complexation with modified DNA molecules. The QD–DNA probe is capable of detecting pathogenic DNA fragments at concentrations as low as 200 nM in solution and shows selective fluorescence recovery in the presence of target DNA (see spectrum c in figure) vs noncomplementary DNA (spectrum d).
10.
One‐step Synthesis and Enhanced Thermoelectric Properties of Polymer–Quantum Dot Composite Films 下载免费PDF全文
Wei Shi Dr. Sanyin Qu Hongyi Chen Yanling Chen Prof. Qin Yao Prof. Lidong Chen 《Angewandte Chemie (International ed. in English)》2018,57(27):8037-8042
Conventional syntheses of polymer–inorganic composite thermoelectric materials suffer major problems such as inhomogeneity, large particle size, and oxidation that result in ineffective loading. Now a one‐step synthesis can be used to fabricate high‐quality small‐sized anions codoped poly(3,4‐ethylenedioxythiophene):dodecylbenzenesulfonate/Cl‐tellurium (PEDOT:DBSA/Cl‐Te) composite films using a series of novel TeIV‐based oxidants. The synchronized production of PEDOT and Te results in thick and homogeneous films containing evenly distributed and well‐protected Te quantum dots. Owing to the heavily doped crystalline polymer matrix as well as the <5 nm unoxidized Te quantum dot loading, at low Te concentrations as 2.1–5.8 wt %, the films exhibits high power factors of about 100 μW m?1 K?2, which is 50 % higher compared to a pure PEDOT:DBSA film. 相似文献
11.
Photocatalytic Hydrogen Evolution by Oleic Acid‐Capped CdS,CdSe, and CdS0.75Se0.25 Alloy Nanocrystals 下载免费PDF全文
Emre Aslan Okan Birinci Abdalaziz Aljabour Faruk Özel Ilker Akın Dr. Imren Hatay Patir Dr. Mahmut Kus Prof. Dr. Mustafa Ersoz 《Chemphyschem》2014,15(13):2668-2671
Photocatalytic generation of hydrogen by using oleic acid‐capped CdS, CdSe, and CdS0.75Se0.25 alloy nanocrystals (quantum dots) has been investigated under visible‐light irradiation by employing Na2S and Na2SO3 as hole scavengers. Highly photostable CdS0.75Se0.25 alloy nanocrystals gave the highest hydrogen evolution rate (1466 μmol h?1 g?1), which was about three times higher than that of CdS and seven times higher than that of CdSe. 相似文献
12.
采用过氧化氢刻蚀法制备石墨烯量子点(GQDs),再采用原位化学还原法制备金纳米粒子-石墨烯量子点纳米复合物(Au NPs-GQDs),最后以聚二甲基二烯丙基氯化铵(PDDA)为交联剂将上述纳米复合物组装于多壁碳纳米管表面,制得金纳米粒子-石墨烯量子点-PDDA-多壁碳纳米管复合材料(Au NPs-GQDsPDDA-MWCNTs)。通过荧光光谱法、紫外-可见吸收光谱法和透射电子显微镜对上述复合材料进行表征。采用滴涂法制得该复合材料修饰的玻碳电极,研究了过氧化氢在该电极上的电化学行为。结果表明:在石墨烯量子点、金纳米粒子和多壁碳纳米管三者的协同作用下,该电极对过氧化氢的电氧化表现出强的催化活性。在优化条件下,安培法检测H_2O_2的线性范围为2.0×10~(-8)~1.5×10~(-3)mol/L,检出限(3sb)为8.0×10~(-9)mol/L,灵敏度为61.6μA/(mmol·L~(-1))。 相似文献
13.
Transparent Metal Selenide Alloy Counter Electrodes for High‐Efficiency Bifacial Dye‐Sensitized Solar Cells 下载免费PDF全文
Yanyan Duan Prof. Qunwei Tang Juan Liu Dr. Benlin He Prof. Liangmin Yu 《Angewandte Chemie (International ed. in English)》2014,53(52):14569-14574
The exploration of cost‐effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye‐sensitized solar cells (DSSCs). Transparent counter electrodes based on binary‐alloy metal selenides (M‐Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution‐based method and employed in efficient bifacial DSSCs. Owing to superior charge‐transfer ability for the I?/I3? redox couple, electrocatalytic activity toward I3? reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85Se, 7.85 % and 4.37 % for Ni0.85Se, 6.43 % and 4.24 % for Cu0.50Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels. 相似文献
14.
A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye‐Sensitized Solar Cells 下载免费PDF全文
Xiaoju Cui Dr. Jianping Xiao Dr. Yihui Wu Peipei Du Prof. Rui Si Prof. Huaixin Yang Prof. Huanfang Tian Prof. Jianqi Li Prof. Wen‐Hua Zhang Prof. Dehui Deng Prof. Xinhe Bao 《Angewandte Chemie (International ed. in English)》2016,55(23):6708-6712
The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye‐sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4/GN is a highly active and stable counter electrode for the interconversion of the redox couple I?/I3?. DFT calculations revealed that the superior properties of CoN4/GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4 /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart. 相似文献
15.
Constance Magne Dr. Sophie Cassaignon Gilles Lancel Dr. Thierry Pauporté 《Chemphyschem》2011,12(13):2461-2467
Brookite TiO2 nanoparticles have been synthesized at low temperature by a soft solution growth method and have been used as building blocks to prepare pure brookite nanoparticle porous films. The film brookite structure was confirmed by XRD and Raman spectroscopy. By spectrophotometry, it was shown that the films had a direct band gap of 3.4 eV. After sensitization by the N719 dye, efficient cells have been produced. A best overall conversion efficiency of 5.97 %, without a scattering layer, was found for the larger TiO2 starting nanoparticles. The cell open‐circuit voltage was improved compared with that of anatase cells and a lower electron diffusion coefficient was found in the photoanodes made of smaller brookite particles. Lanthanum‐doped brookite nanoparticle films were also studied. They showed a marked decreased in the amount of dye loading, and hence, the solar cells had a reduced current density that was not compensated for by the increased open‐circuit voltage of the cells. 相似文献
16.
Room‐Temperature Synthesis of Cu2−xE (E=S,Se) Nanotubes with Hierarchical Architecture as High‐Performance Counter Electrodes of Quantum‐Dot‐Sensitized Solar Cells 下载免费PDF全文
Xin Qi Chen Dr. Zhen Li Dr. Yang Bai Dr. Qiao Sun Prof. Lian Zhou Wang Prof. Shi Xue Dou 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(3):1055-1063
Copper chalcogenide nanostructures (e.g. one‐ dimensional nanotubes) have been the focus of interest because of their unique properties and great potential in various applications. Their current fabrications mainly rely on high‐temperature or complicated processes. Here, with the assistance of theoretical prediction, we prepared Cu2?xE (E=S, Se) micro‐/nanotubes (NTs) with a hierarchical architecture by using copper nanowires (Cu NWs), stable sulfur and selenium powder as precursors at room temperature. The influence of reaction parameters (e.g. precursor ratio, ligands, ligand ratio, and reaction time) on the formation of nanotubes was comprehensively investigated. The resultant Cu2?xE (E=S, Se) NTs were used as counter electrodes (CE) of quantum‐dot‐sensitized solar cells (QDSSCs) to achieve a conversion efficiency (η) of 5.02 and 6.25 %, respectively, much higher than that of QDSSCs made with Au CE (η=2.94 %). 相似文献
17.
Catalytic Molecular Imaging of MicroRNA in Living Cells by DNA‐Programmed Nanoparticle Disassembly 下载免费PDF全文
Xuewen He Tao Zeng Zhi Li Ganglin Wang Prof. Nan Ma 《Angewandte Chemie (International ed. in English)》2016,55(9):3073-3076
Molecular imaging is an essential tool for disease diagnostics and treatment. Direct imaging of low‐abundance nucleic acids in living cells remains challenging because of the relatively low sensitivity and insufficient signal‐to‐background ratio of conventional molecular imaging probes. Herein, we report a class of DNA‐templated gold nanoparticle (GNP)–quantum dot (QD) assembly‐based probes for catalytic imaging of cancer‐related microRNAs (miRNA) in living cells with signal amplification capacity. We show that a single miRNA molecule could catalyze the disassembly of multiple QDs with the GNP through a DNA‐programmed thermodynamically driven entropy gain process, yielding significantly amplified QD photoluminescence (PL) for miRNA imaging. By combining the robust PL of QDs with the catalytic amplification strategy, three orders of magnitude improvement in detection sensitivity is achieved in comparison with non‐catalytic imaging probe, which enables facile and accurate differentiation between cancer cells and normal cells by miRNA imaging in living cells. 相似文献
18.
Dr. Jing Liu Meirong Cui Dr. Li Niu Dr. Hong Zhou Prof. Dr. Shusheng Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(50):18001-18008
Graphene composites with hemin and gold nanoparticles show a better performance for hydrogen peroxide decomposition compared to that of the three components alone or duplex/hybrid complexes. Our previous studies showed that the morphology of the Au nanoparticles may greatly influence the catalytic activity of graphene‐family peroxidase mimics. Recently, we found that Au nanoflowers could grow in situ and form on the surface of hemin/RGO (reduced graphene oxide). The prickly morphology of this Au nanoflower brought a higher catalytic ability with enhanced kinetic parameters than traditional Au nanoparticles that showed a smooth surface. Therefore, based on this discovery, a smart electrochemical aptamer biosensor for K562 leukemia cancer cells was further presented with good performance in selectivity and sensitivity attributed to the excellent mimetic peroxidase catalytic activity of this newly synthesized Au nanoflower decorated graphene–hemin composite (H‐RGO‐Au NFs). 相似文献
19.
High‐Performance Platinum‐Free Dye‐Sensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes 下载免费PDF全文
Sajjad Hussain Dr. Shoyebmohamad F. Shaikh Dr. Dhanasekaran Vikraman Prof. Dr. Rajaram S. Mane Prof. Dr. Oh‐Shim Joo Prof. Dr. Mu Naushad Prof. Dr. Jongwan Jung 《Chemphyschem》2015,16(18):3959-3965
By using a radio‐frequency sputtering method, we synthesized large‐area, uniform, and transparent molybdenum disulfide film electrodes (1, 3, 5, and 7 min) on transparent and conducting fluorine‐doped tin oxide (FTO), as ecofriendly, cost‐effective counter electrodes (CE) for dye‐sensitized solar cells (DSSCs). These CEs were used in place of the routinely used expensive platinum CEs for the catalytic reduction of a triiodide electrolyte. The structure and morphology of the MoS2 was analyzed by using Raman spectroscopy, X‐ray diffraction, and X‐ray photoemission spectroscopy measurements and the DSSC characteristics were investigated. An unbroken film of MoS2 was identified on the FTO crystallites from field‐emission scanning electron microscopy. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curve measurements reveal the promise of MoS2 as a CE with a low charge‐transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide. Finally, an optimized transparent MoS2 CE, obtained after 5 min synthesis time, showed a high power‐conversion efficiency of 6.0 %, which comparable to the performance obtained with a Pt CE (6.6 %) when used in TiO2‐based DSCCs, thus signifying the importance of sputtering time on DSSC performance. 相似文献
20.
Platinum‐Free Binary Co‐Ni Alloy Counter Electrodes for Efficient Dye‐Sensitized Solar Cells 下载免费PDF全文
Xiaoxu Chen Prof. Qunwei Tang Dr. Benlin He Dr. Lin Lin Prof. Liangmin Yu 《Angewandte Chemie (International ed. in English)》2014,53(40):10799-10803
Dye‐sensitized solar cells (DSSCs) have attracted growing interest because of their application in renewable energy technologies in developing modern low‐carbon economies. However, the commercial application of DSSCs has been hindered by the high expenses of platinum (Pt) counter electrodes (CEs). Here we use Pt‐free binary Co‐Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs. As a result of the rapid charge transfer, good electrical conduction, and reasonable electrocatalysis, the power conversion efficiencies of Co‐Ni‐based DSSCs are higher than those of Pt‐only CEs, and the fabrication expense is markedly reduced. The DSSCs based on a CoNi0.25 alloy CE displays an impressive power conversion efficiency of 8.39 %, fast start‐up, multiple start/stop cycling, and good stability under extended irradiation. 相似文献