首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of 1,1‐bis(pinacolatoboryl)ethene with an excess of 1‐bromo‐1‐lithioethene gave 2,3‐bis(pinacolatoboryl)‐1,3‐butadiene in high yield. Palladium‐catalyzed cross‐coupling of the resulting diborylbutadiene with aryl iodides took place smoothly in the presence of a catalytic amount of Pd(OAc)2/PPh3 and aqueous KOH to give 2,3‐diaryl‐1,3‐butadienes in good yields. The coupling reaction with commercially available 4‐acetoxyphenylmethyl chloride under the same conditions followed by hydrolysis of the acetyl groups gave anolignan B in a one‐pot manner. A variety of [3]‐ to [6]dendralenes were synthesized by palladium‐catalyzed coupling of the diene or 1,1‐bis(pinacolato)borylethene with alkenyl or dienyl halides, respectively, in good yields.  相似文献   

2.
Stereospecific synthesis of a family of novel (E)‐2‐aryl‐1‐silylalka‐1,4‐dienes or (E)‐4‐aryl‐5‐silylpenta‐1,2,4‐trienes via a cross‐coupling of (Z)‐silyl(stannyl)ethenes with allyl halides or propargyl bromide is described. In the reaction with allyl bromide, either a Pd(dba)2? CuI combination (dba, dibenzylideneacetone) in DMF or copper(I) iodide in DMSO–THF readily catalyzes or mediates the coupling reaction of (Z)‐silyl(stannyl)ethenes at room temperature, producing novel vinylsilanes bearing an allyl group β to silicon with cis ‐disposition in good yields. Allyl chlorides as halides can be used in the CuI‐mediated reaction. CuI alone much more effectively mediates the cross‐coupling reaction with propargyl bromide in DMSO–THF at room temperature compared with a Pd(dba)2? CuI combination catalysis in DMF, providing novel stereodefined vinylsilanes bearing an allenyl group β to silicon with cis ‐disposition in good yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A Pd(dba)2–P(OEt)3 combination allowed the silastannation of arylacetylenes, 1‐hexyne or propargyl alcohols with tributyl(trimethylsilyl)stannane to take place at room temperature, producing (Z)‐2‐silyl‐1‐stannyl‐1‐substituted ethenes in high yields. Novel silyl(stannyl)ethenes were fully characterized by 1H‐, 13C‐, 29Si‐ and 119Sn‐NMR as well as infrared and mass analyses. Treatment of a series of (Z)‐1‐aryl‐2‐silyl‐1‐stannylethenes and (Z)‐1‐(3‐pyridyl)‐2‐silyl‐1‐stannylethene with hydrochloric acid or hydroiodic acid in the presence of tetraethylammonium chloride (TEACl) or tetrabutylammonium iodide (TBAI) led to the exclusive formation of (E)‐trimethyl(2‐arylethenyl)silanes with high stereoselectivity. A similar reaction of (Z)‐1‐(2‐anisyl)‐2‐silyl‐1‐stannylethene also produced E‐type trimethyl[2‐(2‐anisyl)ethenyl]silane, while (Z)‐trimethyl [2‐(2‐pyridyl)ethenyl]silane was produced exclusively from (Z)‐1‐(2‐pyridyl)‐2‐silyl‐1‐stannylethene. Protodestannylation of (Z)‐1‐[hydroxy(phenyl)methyl]‐2‐silyl‐1‐stannylethene with trifluoroacetic acid took place via the β‐elimination of hydroxystannane, providing trimethyl(3‐phenylpropa‐1,2‐dienyl)silane quite easily. The destannylation products were also fully characterized. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The reaction of dialkyl acetylenedicarboxylates 4 with 1‐aryl‐2‐[(3‐arylquinoxalin‐2(1H)‐ylidene)ethanones 3 in the presence of Ph3P leads to dialkyl (2Z)‐2‐[(E)‐1‐aryl‐2‐(3‐arylquinoxalin‐2‐yl)ethenyl]but‐2‐enedioates 1 in good yields.  相似文献   

5.
Metalation and C‐C Coupling Reaction of 2‐Pyridylmethylamine: Synthesis and Structures of Methylzinc‐2‐pyridylmethylamide, Tris(trimethylsilyl)methylzinc‐2‐pyridylmethylamide and (Z)‐1‐Amino‐1,2‐bis(2‐pyridyl)ethene The metalation of 2‐pyridylmethylamine with dimethylzinc yields methylzinc‐2‐pyridylmethylamide ( 1 ), which shows a dimer‐trimer equilibrium in solution. Compound 1 crystallizes trimeric with a Zn3N3‐cycle in boat conformation. The endocyclic Zn‐N distances vary between 202 and 206 pm. Heating of this compound in toluene in the presence of dimethylzinc leads to the precipitation of zinc metal and to the formation of a few crystals of bis—[methylzinc‐2‐pyridylmethylamido]‐N, N′‐bis(methylzinc)‐2,3,5,6—tetrakis(2‐pyridyl)‐1,4‐diazacyclohexane ( 2 ). The protolysis of this solution with acetamide gives yellowish (Z)‐1‐amino‐1,2‐dipyridylethene ( 3 ) in a rather poor yield. The enamine tautomer is stabilized by N‐H···N hydrogen bridges. The demanding tris(trimethylsilyl)methyl group at the zinc atom allows the isolation of the dimeric tris(trimethylsilyl)methylzinc‐2‐pyridylmethylamide (4) 2 in good yield. A C‐C coupling reaction of this compound with dimethylzinc is not possible.  相似文献   

6.
Annulenoid Tetrathiafulvalenes: 5,16‐Bis(1,3‐benzodithiol‐2‐ylidene)‐5,16‐dihydrotetraepoxy‐ and 5,16‐Bis(1,3‐benzodithiol‐2‐ylidene)‐5,16‐dihydrotetraepithio[22]annulenes(2.1.2.1) The title compounds are among the first tetrathiafulvalenes with annulene spacers, here with tetraepoxy‐[22]annulene(2.1.2.1) (see 3a ), tetraepithio[22]annulene(2.1.2.1) (see 3b ), and diepithiodiepoxy[22]annulene(2.1.2.1) (see 23 ) units. The annulenoid tetrathiafulvalenes 3a and 3b are prepared by cyclizing McMurry coupling of the 5,5′‐(1,3‐benzodithiol‐2‐ylidenemethylene)bis[furan‐ or thiophene‐2‐carbaldehydes] ( 8a or 8b , resp.) or by Wittig reaction of (1,3‐benzodithiol‐2‐yl)tributylphosphonium tetrafluoroborate ( 13b ) with tetraepoxy[22]annulene(2.1.2.1)‐1,12‐dione 20 (formation of 3a ) or diepithiodiepoxy[22]annulene(2.1.2.1)‐1,12‐dione 22 (formation of 23 ). The annulenoide tetrathiafulvalene 3a is obtained as a mixture of the isomers (E,E)‐ and (Z,Z)‐ 3a . At 130°, (Z,Z)‐ 3a rearranges quantitatively into the (E,E)‐isomer. Isomer (E,E)‐ 3a is a dynamic molecule, where the (E)‐ethene‐1,2‐diyl bridges rotate around the adjacent σ‐bonds. The tetraepithioannulene derivative 3b as well as 23 only exist in the (Z,Z)‐configuration. The oxidation of (E,E/Z,Z)‐ 3a with Br2 yields the annulene‐bridged tetrathiafulvalene dication (E,E)‐ 3a Ox, while with 4,5‐dichloro‐3,6‐dioxocyclohexa‐1,4‐diene‐1,2‐dicarbonitrile (DDQ) obviously only the radical cation 3a Sem is formed, which belongs to the class of cyanine‐like violenes. The annulenoide tetrathiafulvalenes 3b and 23 , which exist only in the (Z,Z)‐configuration, obviously for steric reasons, cannot be oxidized by DDQ. Electrochemical studies are in agreement with these results.  相似文献   

7.
A combination catalyst of Pd(dba)2‐PPh3‐CuI‐LiCl or Pd(dba)2‐P(2‐furyl)3‐CuI‐LiCl effectively catalyzed the cross‐coupling of (Z)‐germyl(stannyl)ethenes with aryl halides, providing novel triethyl(2,2‐diarylethenyl)germanes in good to high yields. The reaction proceeds with retention of configuration. Cross‐coupling results in the formation of phenylene or phenyleneethynylene derivatives with terminal stereochemically defined vinylgermane unit(s). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Treatment of (Z)‐1,2,3,4‐tetrakis(pinacolatoboryl)but‐2‐ene, prepared from 2,3‐bis(pinacolatoboryl)buta‐1,3‐diene and bis(pinacolato)diboron, with three molar equivalents of aldehyde in toluene at 100 °C gave the 2,3‐bis(alkylidene)alkane‐1,5‐anti‐diol as a single stereoisomer. The reaction is applicable to both aromatic and α‐unbranched aliphatic aldehydes. The 1,5‐anti‐diols were also synthesized by the one‐pot preparation/triple‐aldehyde addition of the tetraborylated butene. Experimental results for the stepwise treatment of the butene with two types of aldehydes suggest that the rate‐determining step of the triple‐aldehyde addition is the third allylation.  相似文献   

9.
(E) and (Z)‐1,2‐bis(trifluoromethyl)ethene‐1,2‐dicarbonitrile (BTE; (=E) and (Z)‐1,2‐bis(trifluoromethyl)but‐2‐enedinitrile) were reacted with an excess of methyl vinyl ether, used as solvent, and furnished 1 : 2 adducts 6 (54%) and cyclobutanes 3 as 1 : 1 adducts (41%). The four diastereoisomeric bis‐adducts 6 (different ratios from (E) and (Z)‐BTE) are derivatives of 1‐azabicyclo[4.2.0]oct‐5‐ene; X‐ray analyses and 19F‐NMR spectra revealed their structures. Since the cyclobutanes 3 are resistant to vinyl ether, the pathways leading to mono‐ and bis‐adducts must compete on the level of the intermediate l,4‐zwitterions 1 and 2 . The latter either cyclize to the cyclobutanes 3 or to six‐membered cyclic ketene imines 8 which accept a second molecule of vinyl ether to yield the bis‐adducts 6 . The occurrence of the highly strained ketene imines 8 gains credibility by comparison to stable seven‐membered cyclic ketene imines recently reported.  相似文献   

10.
The palladium(0)‐catalyzed polyaddition of bifunctional vinyloxiranes [1,4‐bis(2‐vinylepoxyethyl)benzene ( 1a ) and 1,4‐bis(1‐methyl‐2‐vinylepoxyethyl)benzene ( 1b )] with 1,3‐dicarbonyl compounds [methyl acetoacetate ( 4 ), dimethyl malonate ( 6 ), and Meldrum's acid ( 8 )] was investigated under various conditions. The polyaddition of 1 with 4 was carried out in tetrahydrofuran with phosphine ligands such as PPh3 and 1,2‐bis(diphenylphosphino)ethane (dppe). Polymers having hydroxy, ketone, and ester groups in the side groups ( 5 ) were obtained in good yields despite the kinds of ligands employed. The number‐average molecular weight value of 5b was higher than that of 5a . The polyaddition of 1b and 6 was affected by the kinds of ligands employed. The corresponding polymer 7b was not obtained when PPh3 and 1,2‐bis(diphenylphosphino)ferrocene were used. The polyaddition was carried out with dppe as the ligand and gave polymer 7b in a good yield. The molecular weight of the polymer obtained from 1b and 8 was much higher than those of polymers 5b and 7b . The polyaddition with Pd2(dba)3 · CHCl3/dppe as a catalyst (where dba is dibenzylideneacetone) produced polymer 9b in a 92% yield (number‐average molecular weight = 45,600). The stereochemistries of all the obtained polymers were confirmed as an E configuration by the coupling constant of the vinyl proton. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2487–2494, 2002  相似文献   

11.
The transamination reaction of M[N(SiMe3)2]2 with (2‐pyridylmethyl)(tert‐butyldimethylsilyl)amine yields the corresponding homoleptic metal bis[(2‐pyridylmethyl)(tert‐butyldimethylsilyl)amides] of Mg ( 1 ), Mn ( 2 ), Fe ( 3 ), Co ( 4 ) and Zn ( 5 ). All these compounds crystallize from hexane isotypic in the space group C2/c. From toluene the zinc derivative precipitates as toluene solvate 5 ·toluene. The molecular structures of these compounds are very similar with large NMN angles to the amide nitrogen atoms with NMN values of 148° ( 1 ) and 150° ( 5 ) for the diamagnetic compounds and 156° for the paramagnetic derivatives 2 and 3 . The Co derivative 4 displays a rather small NCoN angle of 142°. Different synthetic routes have been explored for compound 3 which is also available via the metallation reaction of bis(2,4,6‐trimethylphenyl)iron with (2‐pyridylmethyl)(tert‐butyldimethylsilyl)amine and via the metathesis reaction of lithium (2‐pyridylmethyl)(tert‐butyldimethylsilyl)amide with [(thf)2FeCl2]. In course of the metathesis reaction, an equimolar amount of lithium (2‐pyridylmethyl)(tert‐butyldimethylsilyl)amide and [(thf)2FeCl2] yields heteroleptic (2‐pyridylmethyl)(tert‐butyldimethylsilyl)amido iron(II) chloride ( 6 ) which crystallizes as a centrosymmetric dimeric molecule. The oxidative C‐C coupling reaction of 5 with Sn[N(SiMe3)2]2 leads to the formation of tin(II) 1,2‐bis(2‐pyridyl)‐1,2‐bis(tert‐butyldimethylsilylamido)ethane, tin metal and Zn[N(SiMe3)2]2.  相似文献   

12.
An efficient Pd‐catalyzed method for C—O cross‐coupling of ketoximes and chalcone oximes with activated aryl bromides and bromo‐chalcones has been developed. All oxime ethers were obtained in good to excellent yields by [(π‐allyl)PdCl]2/tBuXPhos ( L7 ) catalyst system. TrixiePhos ( L11 ) was also found to be effective for the oxime coupling. This method offers an easy and smooth coupling of chalcone oximes with activated aryl bromides and bromo‐chalcones, which has not been previously explored.  相似文献   

13.
Bis((Z)‐5‐phenyl‐2‐phenylmethylidene‐1, 3‐dithiole‐4‐yl)monosulfane ( 6 ), a molecule consisting of two diphenyldithiafulvene units connected by a sulfur bridge, was synthesized by the selective lithiation of (Z)‐4‐phenyl‐2‐phenylmethylidene‐1, 3‐dithiole ( 7a ) at the endocyclic double bond and by subsequent reaction of the lithiated intermediate with bis(phenylsulfonyl)sulfane. Since this reaction sequence proceeded with retention of configuration, of three possible isomers (E, E, Z, E, and Z, Z) only the Z, Z form was obtained. On the basis of the X‐ray structure analysis and the NMR‐spectroscopic characterization of 6 supplemented by the NMR parameters of (E)‐ and (Z)‐4‐phenyl‐2‐phenylmethylidene‐1, 3‐dithiole, it was demonstrated that two characteristic 5J coupling constants of the proton at the exocyclic double bond indicate the configuration (Z or E) of disubstituted dithiafuvene derivatives.  相似文献   

14.
We report here for the first time a cocrystal of the so‐called neutral calix[4]tube, which is two tail‐to‐tail‐arranged and partially deprotonated tetrakis(carboxymethoxy)calix[4]arenes, including three sodium ions, with 2‐(thiophen‐2‐yl)‐1,3‐benzothiazole, namely trisodium bis(carboxymethoxy)bis(carboxylatomethoxy)calix[4]arene tris(carboxymethoxy)(carboxylatomethoxy)calix[4]arene–2‐(thiophen‐2‐yl)‐1,3‐benzothiazole–dimethyl sulfoxide–water (1/1/2/2), 3Na+·C36H30O122?·C36H31O12?·C11H7NS2·2C2H6OS·2H2O, which provides a new approach into the host–guest chemistry of inclusion complexes. Three packing polymorphs of the same benzothiazole with high Z′ (one with Z′ = 8 and two with Z′ = 4) were also discovered in the course of our desired cocrystallization. The inspection of these polymorphs and a previously known polymorph with Z′ = 2 revealed that Z′ increases as the strength of intermolecular contacts decreases. Also, these results expand the frontier of invoking calixarenes as a host for nonsolvent small molecules, besides providing knowledge on the rare formation of high‐Z′ packing polymorphs of simple molecules, such as the target benzothiazole.  相似文献   

15.
The crystal structures of two salts, products of the reactions between [(5‐methyl‐2‐pyridyl)aminomethylene]bis(phosphonic acid) and 4‐aminopyridine or ammonia, namely bis(4‐aminopyridinium) hydrogen [(5‐methyl‐2‐pyridinio)aminomethylene]diphosphonate 2.4‐hydrate, 2C5H7N2+·C7H10N2O6P22−·2.4H2O, (I), and triammonium hydrogen [(5‐methyl‐2‐pyridyl)aminomethylene]diphosphonate monohydrate, 3NH4+·C7H9N2O6P23−·H2O, (II), have been determined. In (I), the Z configuration of the ring N—C and amino N—H bonds of the bisphosphonate dianion with respect to the Cring—Namino bond is consistent with that of the parent zwitterion. Removing the H atom from the pyridyl N atom results in the opposite E configuration of the bisphosphonate trianion in (II). Compound (I) exhibits a three‐dimensional hydrogen‐bonded network, in which 4‐aminopyridinium cations and water molecules are joined to ribbons composed of anionic dimers linked by O—H...O and N—H...O hydrogen bonds. The supramolecular motif resulting from a combination of these three interactions is a common phenomenon in crystals of all of the Z‐isomeric zwitterions of 4‐ and 5‐substituted (2‐pyridylaminomethylene)bis(phosphonic acid)s studied to date. In (II), ammonium cations and water molecules are linked to chains of trianions, resulting in the formation of double layers.  相似文献   

16.
Various new C2‐symmetric bidentate ligands, bearing phosphorus, nitrogen, and sulfur, were obtained in an efficient manner, starting from (±)‐trans‐3‐methylidenecyclopropane‐1,2‐dicarboxylic acid (Feist's acid; (±)‐trans‐ 3 ). The structures of the new bidentate ligands, di(tert‐butyl) (±)‐[(trans‐3‐methylidenecyclopropane‐1,2‐diyl)dimethanediyl]biscarbamate ((±)‐ 9 ), (±)‐(trans‐3‐methyldienecyclopropane‐1,2‐diyl)dimethanaminium dichloride ((±)‐ 10 ), (±)‐S,S′‐[(trans‐3‐methylidenecyclopropane‐1,2‐diyl)dimethanediyl] diethanethioate ((±)‐ 11 ), and (±)‐[(trans‐3‐methylidenecyclopropane‐1,2‐diyl)dimethanediyl]bis(diphenylphosphane) ((±)‐ 12 ), were fully characterized by standard spectroscopic techniques. These new classes of C2‐symmetric bidentate ligands have the potential to be used in asymmetric catalysis.  相似文献   

17.
A highly enantioselective, chiral, Lewis acid calcium–bis(phosphate) complex, Ca[ 3 a ]n, which catalyzes the electrophilic amination of enamides with azodicarboxylate derivatives 2 to provide versatile chiral 1,2‐hydrazinoimines 4 is disclosed. The reaction gives an easy entry to optically active syn‐1,2‐disubstituted 1,2‐diamines 6 in high yields with excellent enantioselectivities, after a one‐pot reduction of the intermediate 1,2‐hydrazinoimines 4 . The geometry and nature of the N‐substituent of the enamide affect dramatically both the reactivity and the enantioselectivity. Although the calcium–bis(phosphate) complex was a uniquely effective catalyst, the exact nature of the active catalytic species remains unclear. NMR spectroscopy and MS analysis of the various calcium complexes Ca[ 3 ]n reveals that the catalysts exist in various oligomer forms. The present mechanistic study, which includes nonlinear effects and kinetic measurements, constitutes a first step in understanding these calcium–bis(phosphate) complex catalysts. DFT calculations were carried out to explore the mechanism and the origin of the enantioselectivity with the Ca[ 3 ]n catalysts.  相似文献   

18.
Hydromagnesiation of alkynylsilanes 1 in diethyl ether gave (Z)‐α‐silylvinyl Grignard reagents 2 , which reacted with arylsulfenyl chlorides 3 to afford stereoselectively (E)‐α‐silylvinyl sulfides 4 in good yields. (E)‐α‐Silylvinyl sulfides 4 could undergo the cross‐coupling reactions with Grignard reagents in the presence of NiCl2(PPh3)2 to give stereoselectively (Z)‐1,2‐disubstituted vinylsilanes 5 . © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:644–647, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20165  相似文献   

19.
The efficient synthesis of novel spiro[indeno[1,2‐b]quinoxaline derivatives via the four‐component condensation of amines, ninhydrin, isatoic anhydride, and о‐phenylenediamine derivatives catalyzed by ( 3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) supported on γ‐Fe2O3 as novel heterogenous magnetic nanocatalyst was described. The novel nanocatalyst was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), vibrating sample magnetometry (VSM), Field Emission Scanning Electron Microscopy (FE‐SEM), and thermal analysis (TGA‐DTG). The nanoparticles covered by (3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) showed enhanced catalytic performance in the preparation of spiro[indeno[1,2‐b]quinoxaline derivatives in excellent yields. Moreover, this method showed several advantages such as mild conditions, high yields, easy work‐up, and being environmentally friendly. The catalyst can be easily separated from the reaction mixture by an external magnet, recycled, and reused several times without a noticeable decrease in catalytic activity.  相似文献   

20.
Multidentate N‐heterocyclic compounds form a variety of metal complexes with many intriguing structures and interesting properties. The title coordination polymer, catena‐poly[zinc(II)‐bis{μ‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole}‐κ2N3:N3′;N3′:N3‐zinc(II)‐bis(μ‐benzene‐1,2‐dicarboxylato)‐κ2O1:O23O1,O1′:O2], [Zn2(C8H4O4)2(C11H10N4)2]n, has been synthesized by the reaction of Zn(NO3)2 with 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole (imb) and benzene‐1,2‐dicarboxylic acid (H2bdic) under hydrothermal conditions. There are two crystallographically distinct imb ligands [imb(A) and imb(B)] in the structure which adopt very similar coordination geometries. The imb(A) ligand bridges two symmetry‐related Zn1 ions, yielding a binuclear [(Zn1)2{imb(A)}2] unit, and the imb(B) ligand bridges two symmetry‐related Zn2 ions resulting in a binuclear [(Zn2)2{imb(B)}2] unit. The above‐mentioned binuclear units are further connected alternately by pairs of bridging bdic2− ligands, forming an infinite one‐dimensional chain. These one‐dimensional chains are further connected through N—H...O hydrogen bonds, leading to a two‐dimensional layered structure. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号