首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
徐业伟  朱方华  张海连  王鹏  张林 《应用化学》2009,26(11):1269-1272
以苝四酸酐为原料合成了1,7-二溴-3,4,9,10-苝四酸酐(PeryBr2)、N,N′-二(十二烷基)-1,7-二溴-3,4,9,10-苝四羧酸二酰亚胺(DD-PeryBr2)和N,N′-二(十二烷基)-1,7-二对叔丁基苯氧基-3,4,9,10-苝四羧酸二酰亚胺(DD-PeryBp2) 3种苝四羧酸二酰亚胺类化合物,并对其结构和性能利用紫外-可见吸收光谱、傅立叶红外光谱、核磁共振、质谱、热分析和荧光光谱测试技术进行了表征和测试。 结果表明,DD-PeryBp2能很好的溶于甲苯、氯仿、四氢呋喃等常用有机溶剂。 紫外可见最大吸收波长和荧光最大发射波长分别为548和576 nm。 DD-PeryBp2具有很好的热稳定性,质量损失5%时的温度为433 ℃。  相似文献   

2.
Two perylene diimide (PDI) enantiomers ( d/l ‐PDI ) incorporating the d /l ‐alanine moiety have been designed and synthesized. d/l ‐PDI in chloroform displays bright‐yellow fluorescence that is redshifted to orange‐red when the solvent contains a methanol fraction of 99 vol %. No circular dichroism (CD) or circularly polarized luminescence (CPL) signals were observed for d/l ‐PDI enantiomers in CHCl3. Interestingly, the d/l ‐PDI enantiomers exhibit clear mirror‐image Cotton effects and CPL emission in the aggregate state. The optical anisotropy factor (glum) is as high as 0.02 at fm=99 %, which can be attributed to self‐assembly through intermolecular π–π interactions in the aggregate state.  相似文献   

3.
Two isomeric N‐annulated perylene diimide dimers, namely, p‐BDNP and m‐BDNP were designed and synthesized via geometric tuning. The distinct molecular geometry and packing arrangements of isomers with almost identical optical and electrochemical properties rendered us an in‐depth understanding of the molecular structure–aggregation state–photovoltaic performance relationship. Blended with the commercially available donor PCE‐10, p‐BDNP and m‐BDNP showed distinct differences in photovoltaic performance with power conversion efficiencies (PCEs) of 5.01 % and 4.15 %, respectively.  相似文献   

4.
Eight carbohydrate‐modified perylene bisimides ( PBI‐4 lac‐2 lac , PBI‐4 lac‐2 Man , PBI‐4 lac‐2 Gal , PBI‐4 lac‐2 Mal , PBI‐4 Man‐2 Man , PBI‐4 Man‐2 lac , PBI‐4 Man‐2 Gal and PBI‐4 Man‐2 Mal ) were synthesized, and the following predetermined supramolecular chirality rule was found: perylene bisimides modified with disaccharides (D ‐lactose and D ‐maltose) at the imide position generated right‐handed chirality, and those modified with monosaccharides (D ‐mannose and D ‐galactose) generated left‐handed chirality, when D ‐lactose or D ‐mannose was substituted in the bay positions of perylene bisimides with amide bonds as the linking spacers. These results may be because of the difference in the stacking angle of the perylene bisimide backbones induced by the steric effect and the additional hydrogen bonds between the disaccharide residues. This study provides an important design rule for predetermined chiral self‐assembly of perylene bisimides.  相似文献   

5.
6.
The supramolecular aggregation of three diimidazolium‐functionalized perylene bisimides, differing in the alkyl chain length was investigated. These salts form aggregates in solvents like chloroform, dichloromethane, and glycerol. Solvent‐, concentration‐, and temperature‐dependent spectroscopic studies were carried out, evidencing the occurrence of an isodesmic, enthalpy‐driven aggregation process, underpinned by π–π stacking and hydrogen bonding. Moreover, dynamic light scattering (DLS) measurements and SEM images revealed that these salts aggregate in chloroform into elongated structures.  相似文献   

7.
A chiral perylene diimide building block has been prepared based on an amine derivative of the amino acid L ‐phenylalanine. Detailed studies were carried out into the self‐assembly behaviour of the material in solution and the solid state using UV/Vis, circular dichroism (CD) and fluorescence spectroscopy. For the charged building block BTPPP, the molecular chirality of the side chains is translated into the chiral supramolecular structure in the form of right‐handed helical aggregates in aqueous solution. Temperature‐dependent UV/Vis studies of BTPPP in aqueous solution showed that the self‐assembly behaviour of this dye can be well described by an isodesmic model in which aggregation occurs to generate short stacks in a reversible manner. Wide‐angle X‐ray diffraction studies (WXRD) revealed that this material self‐organises into aggregates with π–π stacking distances typical for π‐conjugated materials. TEM investigations revealed the formation of self‐assembled structures of low order and with no expression of chirality evident. Differential scanning calorimetry (DSC) and polarised optical microscopy (POM) were used to investigate the mesophase properties. Optical textures representative of columnar liquid–crystalline phases were observed for solvent‐annealed samples of BTPPP. The high solubility, tunable self‐assembly and chiral ordering of these materials demonstrate their potential as new molecular building blocks for use in the construction of chiro‐optical structures and devices.  相似文献   

8.
For future all‐soluble organic thin film transistor (OTFT) applications, a new soluble n‐type air‐stable perylene diimide derivative semiconductor material with (trifluoromethyl)benzyl groups (TC–PDI–F) is synthesized. The film is formed by spin‐coating in air and optimized for OTFT fabrications. The transistor characteristics and air‐stability of the TC–PDI–F OTFTs is measured to investigate the feasibility of using solution‐processed TC–PDI–F for future OTFT applications. For all‐solution OTFT process applications, the transistor characteristics are demonstrated by using TC–PDI–F as an n‐type semiconductor material and liquid‐phase‐deposited SiO2 (LPD–SiO2) as a gate dielectric material. All processes (except material synthesis and electrode deposition) and electrical measurements are conducted in air.  相似文献   

9.
A novel sextuple hydrogen‐bonding (HB) self‐assembly molecular duplex bearing red‐emitting perylene diimide (PDI) fluorophores, namely PDIHB , was synthesized, and its molecular structure was confirmed by 1H NMR, 13C NMR, TOF‐MS and 2D NMR. Compared with the small molecular reference compound PDI , PDIHB shows one time enhanced fluorescence efficiency in solid state (4.1% vs. 2.1%). More importantly, the presence of bulky HB oligoamide strands in PDIHB could trigger effective spatial separation between guest and host fluorophores in thin solid film state, hence inefficient energy transfer occurs between the blue‐emitting host 2TPhNIHB and red guest PDIHB in the 2 wt% guest/host blending film. As a result, a solution‐processed organic light‐emitting diode (OLED) with quite simple device structure of ITO/PEDOT:PSS (40 nm)/PVK (40 nm)/ PDIHB (2 wt%): 2TPhNIHB (50 nm)/LiF (0.8 nm)/Al (100 nm) could emit bias‐independent warm‐white electroluminescence with stable Commission Internationale de L'Eclairage coordinates of (0.42, 0.33), and the maximum brightness and current efficiency of this device are 260 cd·m?2 and 0.49 cd·A?1, respectively. All these results indicated that HB self‐assembly supramolecular fluorophores could act as prospective materials for white OLED application.  相似文献   

10.
We have demonstrated a turn‐on fluorescent sensor 6 for detection of Fe3+ based on photo‐induced electron transfer (PET) mechanism. The probe comprises a perylene tetracarboxylic diimide (PDI) fluorophore and two bis((1,2,3‐triazol‐4‐yl)methyl)amine (DTA) moieties as the metal ion receptors. It exhibits high selectivity toward Fe3+ over various other metal ions in CH3CN/H2O (1:1, V/V). The binding stoichiometry for 6 ‐Fe3+ complexes has been determined to be 1:2 by a Job plot of fluorescence. The association constant between 6 and Fe3+ was estimated to be 1.04×1010 (mol/L)?2 by Benesi‐Hildebrand equation.  相似文献   

11.
12.
Highly ordered supramolecular microfibers were constructed through a simple ionic self‐assembly strategy from complexes of the N‐tetradecyl‐N‐methylpyrrolidinium bromide (C14MPB) surface‐active ionic liquid and the small methyl orange (MO) dye molecule, with the aid of patent blue VF sodium salt. By using scanning electron microscopy and polarized optical microscopy, the width of these self‐assembled microfibers is observed to be about 1 to 5 μm and their length is from tens of micrometers to almost a millimeter. The 1H NMR spectra of the microfibers indicates that the supramolecular complexes are composed of C14MPB and MO in equal molar ratio. The electrostatic, hydrophobic, and π–π stacking interactions are regarded as the main driving forces for the formation of microfibers. Furthermore, through characterization by using confocal fluorescence microscopy, the microfibers were observed to show strong fluorescent properties and may find potential applications in many fields.  相似文献   

13.
Regioselective functionalization of core per‐substituted perylene diimides has been achieved efficiently based on a new versatile building block, named tetrabromotetrachloro‐perylene‐3,4:9,10‐tetracarboxylic acid dianhydride (Br4Cl4‐PTCDA), which affords a series of novel chromophores with impressive optoelectronic properties. Direct palladium‐catalyzed fourfold intramolecular ring fusion affords successfully unique propeller‐shaped biscarbazole[2,3‐b]carbazole diimides with six annulated rings.  相似文献   

14.
Supramolecular forces govern self‐assembly and further determine the final morphologies of self‐assemblies. However, how they control the morphology remains hitherto largely unknown. In this paper, we have discovered that the self‐assembled nanostructures of rigid organic semiconductor chromophores can be finely controlled by the secondary forces by fine‐tuning the surrounding environments. In particular, we used water/methanol/hydrochloric acid to tune the environment and observed five different phases that resulted from versatile molecular self‐assemblies. The representative self‐assembled nanostructures were nanotapes, nanoparticles and their 1D assemblies, rigid microplates, soft nanoplates, and hollow nanospheres and their 1D assemblies, respectively. The specific nanostructure formation is governed by the water fraction, Rw, and the concentration of hydrochloric acid, [HCl]. For instance, nanotapes formed at low [HCl] and Rw values, whereas hollow nanospheres formed when either the HCl concentration is high, or the water fraction is low, or both. The significance of this paper is that it provides a useful phase diagram by using Rw and [HCl] as two variables. Such a self‐assembly phase diagram maps out the fine control that the secondary forces have on the self‐assembled morphology, and thus allows one to guide the formation toward a desired nanostructure self‐assembled from rigid organic semiconductor chromophores by simply adjusting the two key parameters of Rw and [HCl].  相似文献   

15.
A novel water‐soluble fluorescent glycodendrimer based on perylene bisimides is synthesized, which exhibits high fluorescence quantum yield of 54%. While the binding interactions of PBI‐Man with Concanavalin A (Con A) are studied by fluorescence spectra and CD spectra, which show strong binding affinity for Con A with the binding constant of 3.8 × 107m −1 for monomeric mannose, nearly four orders of magnitude higher affinity than the monovalent mannose ligand. Furthermore, the fluorescence imaging of macrophage cell with PBI‐Man is investigated, and shows selectively binding interaction with the mannose receptor‐medicated cell entry. Moreover, the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) activities of PBI‐Man show that PBI‐Man as a biocompatible agent is noncytotoxic to living cells.

  相似文献   


16.
In a one-step reaction, we prepared a dibenzylamine perylene diimide derivative (PDI). Its double hook structure allows for self-association with a constant of Kd ∼108 M−1 determined by fluorescence. We confirmed its ability to bind PAHs using UV/Vis, fluorescence, and 1H NMR titrations in CHCl3. The complex formation signature in UV/vis is a new band at 567 nm. The calculated binding constants (Ka∼104 M−1) follow the trend pyrene>perylene>phenanthrene>naphthalene>anthracene. Theoretical modeling of these systems using DFT ωB97X-D/6-311G(d,p) proved helpful in rationalizing the complex formation and the observed association trend. The distinctive signal in UV/vis is due to a charge transfer in the complex from orbitals in the guest to the host. SAPT(DFT) confirmed that the driving forces in the complex formation are exchange and dispersion (π–π interactions). Still, the recognition ability depends on the electrostatic component of the interaction, a minor fraction.  相似文献   

17.
Chiral bichromophoric perylene bisimides are demonstrated as active materials of circularly polarized emission. The bichromophoric system exhibited circularly polarized luminescence with dissymmetry factors typical of that of similar organic chiral chromophoric systems in the monomeric state. Variation in solvent composition led to the formation of stably soluble helical aggregates through intermolecular interactions. A large enhancement in the dissymmetry of circularly polarized luminescence was exhibited by the aggregated structures both in the solution and solid states. The sum of excitonic couplings between the individual chromophoric units in the self‐assembled state results in relatively large dissymmetry in the circularly polarized luminescence, thereby giving rise to enhanced dissymmetry factors for the aggregated structures. The spacer between chiral center and chromophoric units played a crucial role in the effective enhancement of chiroptical properties in the self‐assembled structures. These materials might provide opportunities for the design of a new class of functional bichromophoric organic nanoarchitectures that can find potential applications in the field of chiroptical memory and light‐emitting devices based on supramolecular electronics.  相似文献   

18.
Herein we report on structural, morphological, and optical properties of homochiral and heterochiral J‐aggregates that were created by nucleation–elongation assembly of atropo‐enantiomerically pure and racemic perylene bisimides (PBIs), respectively. Our detailed studies with conformationally stable biphenoxy‐bridged chiral PBIs by UV/Vis absorption, circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM) revealed structurally as well as spectroscopically quite different kinds of J‐aggregates for enantiomerically pure and racemic PBIs. AFM investigations showed that enantiopure PBIs form helical nanowires of unique diameter and large length‐to‐width ratio by self‐recognition, while racemic PBIs provide irregular‐sized particles by self‐discrimination of the enantiomers at the stage of nucleation. Steady‐state fluorescence spectroscopy studies revealed that the photoluminescence efficiency of homochiral J‐aggregated nanowires (47±3 %) is significantly higher than that of heterochiral J‐aggregated particle‐like aggregates (12±3 %), which is explained in terms of highly ordered molecular stacking in one‐dimensional nanowires of homochiral J‐aggregates. Our present results demonstrate the high impact of homochirality on the construction of well‐defined nanostructures with unique optical properties.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号