首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycyclic azoniahetarenes were employed to determine the effect of the structure of unsubstituted polyaromatic ligands on their quadruplex-DNA binding properties. The interactions of three isomeric diazoniadibenzo[b,k]chrysenes (4?a-c), diazoniapentaphene (5), diazoniaanthra[1,2-a]anthracene (6), and tetraazoniapentapheno[6,7-h]pentaphene (3) with quadruplex DNA were examined by DNA melting studies (FRET melting) and fluorimetric titrations. In general, penta- and hexacyclic azoniahetarenes bind to quadruplex DNA (K(b) ≈10(6) M(-1) ) even in the absence of additional functional side chains. The binding modes of 4?a-c and 3 were studied in more detail by ligand displacement experiments, isothermal titration calorimetry, and CD and NMR spectroscopy. All experimental data indicate that terminal π stacking of the diazoniachrysenes to the quadruplex is the major binding mode; however, because of different electron distributions of the π?systems of each isomer, these ligands align differently in the binding site to achieve ideal binding interactions. It is proposed that tetraazonia ligand 3 binds to the quadruplex by terminal stacking with a small portion of its π?system, whereas a significant part of the bulky ligand most likely points outside the quadruplex structure, and is thus partially placed in the grooves. Notably, 3 and the known tetracationic porphyrin TMPyP4 exhibit almost the same binding properties towards quadruplex DNA, with 3 being more selective for quadruplex than for duplex DNA. Overall, studies on azonia-type hetarenes enable understanding of some parameters that govern the quadruplex-binding properties of parent ligand systems. Since unsubstituted ligands were employed in this study, complementary and cooperative effects of additional substituents, which may interfere with the ligand properties, were eliminated.  相似文献   

2.
This review deals with recent progress in the synthesis and evaluation of our telomestatin‐inspired macrocyclic polyoxazoles as G‐quadruplex (G4) ligands. The hexaoxazole derivatives (6OTDs) interact with and stabilize G4‐forming oligonucleotides, depending upon the character of the side chain functional groups. Cationic functional groups are particularly effective due to their secondary interaction with phosphate in the DNA backbone. On the other hand, heptaoxazole derivatives (7OTDs) showed potent G4‐binding and stabilization activity regardless of the functional groups on the side chain. A caged G4 ligand, Y2Nv2‐6OTD ( 7 ), and a fluorescent G4 ligand, L1BOD‐7OTD ( 13 ), have been synthesized.  相似文献   

3.
We report herein a solvent‐free and microwaved‐assisted synthesis of several water soluble acyclic pentaheteroaryls containing 1,2,4‐oxadiazole moieties ( 1 – 7 ). Their binding interactions with DNA quadruplex structures were thoroughly investigated by FRET melting, fluorescent intercalator displacement assay (G4‐FID) and CD spectroscopy. Among the G‐quadruplexes considered, attention was focused on telomeric repeats together with the proto‐oncogenic c‐kit sequences and the c‐myc oncogene promoter. Compound 1 , and to a lesser extent 2 and 5 , preferentially stabilise an antiparallel structure of the telomeric DNA motif, and exhibit an opposite binding behaviour to structurally related polyoxazole ( TOxaPy ), and do not bind duplex DNA. The efficiency and selectivity of the binding process was remarkably controlled by the structure of the solubilising moieties.  相似文献   

4.
A series of dinuclear ruthenium(II) complexes were synthesised, and the complexes were determined to be new highly selective compounds for binding to telomeric G‐quadruplex DNA. The interactions of these complexes with telomeric G‐quadruplex DNA were studied by using circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assays, isothermal titration calorimetry (ITC) and molecular modelling. The results showed that the complexes 1 , 2 and 4 induced and stabilised the formation of antiparallel G‐quadruplexes of telomeric DNA in the absence of salt or in the presence of 100 mM K+‐containing buffer. Furthermore, complexes 1 and 2 strongly bind to and effectively stabilise the telomeric G‐quadruplex structure and have significant selectivity for G‐quadruplex over duplex DNA. In comparison, complex 3 had a much lesser effect on the G‐quadruplex, suggesting that possession of a suitably sized plane for good π–π stacking with the G‐quadruplets is essential for the interaction of the dinuclear ruthenium(II) complexes with the G‐quadruplex. Moreover, telomerase inhibition by the four complexes and their cellular effects were studied, and complex 1 was determined to be the most promising inhibitor of both telomerase and HeLa cell proliferation.  相似文献   

5.
6.
7.
8.
We have developed a straightforward synthetic pathway to a set of six photoactivatable G‐quadruplex ligands with a validated G4‐binding motif (the bisquinolinium pyridodicarboxamide PDC‐360A) tethered through various spacers to two different photo‐cross‐linking groups: benzophenone and an aryl azide. The high quadruplex‐versus‐duplex selectivity of the PDC core was retained in the new derivatives and resulted in selective alkylation of two well‐known G‐quadruplexes (human telomeric G4 and oncogene promoter c‐myc G4) under conditions of harsh competition. The presence of two structurally different photoactivatable functions allowed the selective alkylation of G‐quadruplex structures at specific nucleobases and irreversible G4 binding. The topology and sequence of the quadruplex matrix appear to influence strongly the alkylation profile, which differs for the telomeric and c‐myc quadruplexes. The new compounds are photoactive in cells and thus provide new tools for studying G4 biology.  相似文献   

9.
Small molecules capable of stabilizing the G‐quadruplex (G4) structure are of interest for the development of improved anticancer drugs. Novel 4,7‐diamino‐substituted 1,10‐phenanthroline‐2,9‐dicarboxamides that represent hybrid structures of known phenanthroline‐based ligands have been designed. An efficient synthetic route to the compounds has been developed and their interactions with various G4 sequences have been evaluated by Förster resonance energy transfer (FRET) melting assays, fluorescent intercalator displacement (FID), electrospray ionization mass spectrometry (ESI‐MS), and circular dichroism (CD) spectroscopy. The preferred compounds have high aqueous solubility and are strong and potent G4 binders with a high selectivity over duplex DNA; thus, they represent a significant improvement over the lead compounds. Two of the compounds are inhibitors of HeLa and HT1080 cell proliferation.  相似文献   

10.
A trap that closes with a “click” : The copper‐catalyzed azide–alkyne cycloaddition can occur in different G‐quadruplex structures (see scheme). The species trapped by the click reaction can then be separated and analyzed. By using this approach, a DNA–RNA hybrid‐type G‐quadruplex structure formed by human telomeric DNA and RNA sequences was detected.

  相似文献   


11.
12.
Aptamer‐based biosensors offer promising perspectives for high performance, specific detection of proteins. The thrombin binding aptamer (TBA) is a G‐quadruplex‐forming DNA sequence, which is frequently elongated at one end to increase its analytical performances in a biosensor configuration. Herein, we investigate how the elongation of TBA at its 5′ end affects its structure and stability. Circular dichroism spectroscopy shows that TBA folds in an antiparallel G‐quadruplex conformation with all studied cations (Ba2+, Ca2+, K+, Mg2+, Na+, NH4+, Sr2+ and the [Ru(NH3)6]2+/3+ redox marker) whereas other structures are adopted by the elongated aptamers in the presence of some of these cations. The stability of each structure is evaluated on the basis of UV spectroscopy melting curves. Thermal difference spectra confirm the quadruplex character of all conformations. The elongated sequences can adopt a parallel or an antiparallel structure, depending on the nature of the cation; this can potentially confer an ion‐sensitive switch behavior. This switch property is demonstrated with the frequently employed redox complex [Ru(NH3)6]3+, which induces the parallel conformation at very low concentrations (10 equiv per strand). The addition of large amounts of K+ reverts the conformation to the antiparallel form, and opens interesting perspectives for electrochemical biosensing or redox‐active responsive devices.  相似文献   

13.
Sequence inversion in G‐rich DNA from 5′→3′ to 3′→5′ exerts a substantial effect on the number of structures formed, while the type of G‐quadruplex fold is in fact determined by the presence of K+ or Na+ ions. The melting temperatures of G‐quadruplexes adopted by oligonucleotides with sequences in the 5′→3′ direction are higher than those of their 3′→5′ counterparts with both KCl and NaCl. CD, UV, and NMR spectroscopy demonstrates the importance of primary sequence for the structural diversity of G‐quadruplexes. The changes introduced by mere sequence reversal of the G‐rich DNA segment have a substantial impact on the polymorphic nature of the resulting G‐quadruplexes and their potential physiological roles. The insights resulting from this study should enable extension of the empirical rules for the prediction of G‐quadruplex topology.  相似文献   

14.
15.
Guanine‐rich sequences of DNA can assemble into tetrastranded structures known as G‐quadruplexes. It has been suggested that these secondary DNA structures could be involved in the regulation of several key biological processes. In the human genome, guanine‐rich sequences with the potential to form G‐quadruplexes exist in the telomere as well as in promoter regions of certain oncogenes. The identification of these sequences as novel targets for the development of anticancer drugs has sparked great interest in the design of molecules that can interact with quadruplex DNA. While most reported quadruplex DNA binders are based on purely organic templates, numerous metal complexes have more recently been shown to interact effectively with this DNA secondary structure. This Review provides an overview of the important roles that metal complexes can play as quadruplex DNA binding molecules, highlighting the unique properties metals can confer to these molecules.  相似文献   

16.
17.
A series of platinum(II) complexes with tridentate ligands was synthesized and their interactions with G‐quadruplex DNA within the c‐myc gene promoter were evaluated. Complex 1 , which has a flat planar 2,6‐bis(benzimidazol‐2‐yl)pyridine (bzimpy) scaffold, was found to stabilize the c‐myc G‐quadruplex structure in a cell‐free system. An in silico G‐quadruplex DNA model has been constructed for structure‐based virtual screening to develop new PtII‐based complexes with superior inhibitory activities. By using complex 1 as the initial structure for hit‐to‐lead optimization, bzimpy and related 2,6‐bis(pyrazol‐3‐yl)pyridine (dPzPy) scaffolds containing amine side‐chains emerge as the top candidates. Six of the top‐scoring complexes were synthesized and their interactions with c‐myc G‐quadruplex DNA have been investigated. The results revealed that all of the complexes have the ability to stabilize the c‐myc G‐quadruplex. Complex 3 a ([PtII L2R ] + ; L2 =2,6‐bis[1‐(3‐piperidinepropyl)‐1H‐enzo[d]imidazol‐2‐yl]pyridine, R =Cl) displayed the strongest inhibition in a cell‐free system (IC50=2.2 μM ) and was 3.3‐fold more potent than that of 1 . Complexes 3 a and 4 a ([PtII L3R ]+; L3 =2,6‐bis[1‐(3‐morpholinopropyl)‐1H‐pyrazol‐3‐yl]pyridine, R =Cl) were found to effectively inhibit c‐myc gene expression in human hepatocarcinoma cells with IC50 values of ≈17 μM , whereas initial hit 1 displayed no significant effect on gene expression at concentrations up to 50 μM . Complexes 3 a and 4 a have a strong preference for G‐quadruplex DNA over duplex DNA, as revealed by competition dialysis experiments and absorption titration; 3 a and 4 a bind G‐quadruplex DNA with binding constants (K) of approximately 106–107 dm3 mol?1, which are at least an order of magnitude higher than the K values for duplex DNA. NMR spectroscopic titration experiments and molecular modeling showed that 4 a binds c‐myc G‐quadruplex DNA through an external end‐stacking mode at the 3′‐terminal face of the G‐quadruplex. Intriguingly, binding of c‐myc G‐quadruplex DNA by 3 b is accompanied by an increase of up to 38‐fold in photoluminescence intensity at λmax=622 nm.  相似文献   

18.
A new G‐quadruplex (G‐4)‐directing alkylating agent BMVC‐C3M was designed and synthesized to integrate 3,6‐bis(1‐methyl‐4‐vinylpyridinium iodide)carbazole (BMVC) with aniline mustard. Various telomeric G‐4 structures (hybrid‐2 type and antiparallel) and an oncogene promoter, c‐MYC (parallel), were constructed to react with BMVC‐C3M, yielding 35 % alkylation yield toward G‐4 DNA over other DNA categories (<6 %) and high specificity under competition conditions. Analysis of the intact alkylation adducts by electrospray ionization mass spectroscopy (ESI‐MS) revealed the stepwise DNA alkylation mechanism of aniline mustard for the first time. Furthermore, the monoalkylation sites and intrastrand cross‐linking sites were determined and found to be dependent on G‐4 topology based on the results of footprinting analysis in combination with mass spectroscopic techniques and in silico modeling. The results indicated that BMVC‐C3M preferentially alkylated at A15 (H26), G12 (H24), and G2 (c‐MYC), respectively, as monoalkylated adducts and formed A15–C3M–A21 (H26), G12–C3M–G4 (H24), and G2–C3M–G4/G17 (c‐MYC), respectively, as cross‐linked dialkylated adducts. Collectively, the stability and site‐selective cross‐linking capacity of BMVC‐C3M provides a credible tool for the structural and functional characterization of G‐4 DNAs in biological systems.  相似文献   

19.
G‐quadruplexes are four‐stranded nucleic acid structures that are built from consecutively stacked guanine tetrad (G‐tetrad) assemblies. The simultaneous incorporation of two guanine base lesions, xanthine (X) and 8‐oxoguanine (O), within a single G‐tetrad of a G‐quadruplex was recently shown to lead to the formation of a stable G?G?X?O tetrad. Herein, a judicious introduction of X and O into a human telomeric G‐quadruplex‐forming sequence is shown to reverse the hydrogen‐bond polarity of the modified G‐tetrad while preserving the original folding topology. The control exerted over G‐tetrad polarity by joint X?O modification will be valuable for the design and programming of G‐quadruplex structures and their properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号