首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first comprehensive study of the synthesis and structure–property relationships of 2,2′‐bis(benzo[b]phosphole)s and 2,2′‐benzo[b]phosphole–benzo[b]heterole hybrid π systems is reported. 2‐Bromobenzo[b]phosphole P‐oxide underwent copper‐assisted homocoupling (Ullmann coupling) and palladium‐catalyzed cross‐coupling (Stille coupling) to give new classes of benzo[b]phosphole derivatives. The benzo[b]phosphole–benzo[b]thiophene and ‐indole derivatives were further converted to P,X‐bridged terphenylenes (X=S, N) by a palladium‐catalyzed oxidative cycloaddition reaction with 4‐octyne through the Cβ? H activation. X‐ray analyses of three compounds showed that the benzo[b]phosphole‐benzo[b]heterole derivatives have coplanar π planes as a result of the effective conjugation through inter‐ring C? C bonds. The π–π* transition energies and redox potentials of the cis and trans isomers of bis(benzo[b]phosphole) P‐oxide are very close to each other, suggesting that their optical and electrochemical properties are little affected by the relative stereochemistry at the two phosphorus atoms. The optical properties of the benzo[b]phosphole–benzo[b]heterole hybrids are highly dependent on the benzo[b]heterole subunits. Steady‐state UV/Vis absorption/fluorescence spectroscopy, fluorescence lifetime measurements, and theoretical calculations of the non‐fused and acetylene‐fused benzo[b]phosphole–benzo[b]heterole π systems revealed that their emissive excited states consist of two different conformers in rapid equilibrium.  相似文献   

2.
Phosphole is a chemically tunable heterole, and its π‐conjugated derivatives are potential candidates for optoelectronic materials. This account describes recent developments in the synthesis and structure–property relationships of π‐conjugated phosphole derivatives made by my research group. Thiophene–phosphole–styrene, phosphole–acetylene–arene, oligophosphole, polyphosphole, areno[c]phosphole, and phosphole–heterole π systems are synthesized using titanacycle‐mediated metathesis and palladium‐catalyzed cross‐coupling reactions. The structural, optical, and electrochemical properties of selected compounds are discussed. Initial results on some applications of thiophene–phosphole copolymers, acenaphtho[c]phospholes, and amine–terthiophene–phosphole donor–π–acceptor dyes in organic solar cells are described. These results give valuable information and guidelines for designing new phosphorus‐containing organic materials for molecular electronics.  相似文献   

3.
A family of highly emissive dithiazolo[5,4‐b:4′,5′‐d]phospholes has been designed and synthesized. The structures of two trivalent P species, as well as their corresponding P oxides, have been confirmed by X‐ray crystallography. The parent dithiazolo[5,4‐b:4′,5′‐d]phosphole oxide exhibits strong blue photoluminescence at λem=442 nm, with an excellent quantum yield efficiency of ?PL=0.81. The photophysical properties of these compounds can be easily tuned by extension of the conjugation and modification of the phosphorus center. Compared with the established dithieno[3,2‐b:2′,3′‐d]phosphole system, the incorporation of electronegative nitrogen atoms leads to significantly lowered frontier orbital energy levels, as validated by both electrochemistry and theoretical calculations, thus suggesting that the dithiazolo[5,4‐b:4′,5′‐d]phospholes are valuable, air‐stable, n‐type conjugated materials. These new building blocks have been further applied to the construction of an extended oligomer with fluorene. Extension of the dithiazolophosphole core with triazole units through click reactions also provides a suitable N,N‐chelating moiety for metal binding and a representative molecular species was successfully used as a selective colorimetric and fluorescent sensor for CuII ions.  相似文献   

4.
A formal [4+2] cycloaddition of α,α′‐dichloro‐ortho‐xylenes with various alkynes has been developed using a low‐valent cobalt catalyst. The transformation has a wide substrate scope and high functional‐group tolerance and led to 1,4‐dihydronaphthalenes. The formed cycloadducts were easily aromatized with MnO2 under air. A mechanistic investigation suggests that the transformation proceeds through a benzyl cobaltation of alkyne, not the classical Diels–Alder reaction of ortho‐quinodimethanes. This methodology provides a straightforward and streamlined access to linearly expanded π‐conjugated aromatics.  相似文献   

5.
((?)‐Menthyl (S)‐6′‐acrylyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate ( 3 ) was synthesized and anionically polymerized using n‐BuLi as an initiator in toluene. The monomer 3 was levorotatory and had an [α]D25 value of ?72.4, but its corresponding polymer poly‐ 3 was dextrorotatory and showed an [α]D25 value of +162.0. Poly‐ 3 was confirmed to exist in the form of one‐handed helical structure in solution by means of comparing the specific optical rotation and the CD spectra with that of 3 and the model compounds such as (?)‐menthyl (S)‐6′‐propionyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2b and (?)‐menthyl (S)‐6′‐heptanoyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2c . This conclusion was also confirmed by the fact that the g‐value of poly‐ 3 is about 11 times of that of monomer 3 .  相似文献   

6.
A versatile phosphorus‐containing π‐conjugated building block, thieno[3,4‐c]phosphole‐4,6‐dione (TPHODO), has been developed. The utility of this simple but hitherto unknown building block has been demonstrated by preparing novel functional organophosphorus compounds and bandgap‐tunable conjugated polymers.  相似文献   

7.
The mass spectra of some α-substituted phenyl-α,α′-dimethoxyl ketones (compounds 1) and their 2,4-dinitrophenylhydrazones (compounds 2) and semicarbazones (compounds 3) have been studied. The characteristic fragments at m/z (M ? 73) from compounds 1, m/z (M ? 253) from compounds 2 and m/z (M ? 130) from compounds 3 are abundant and proposed to be [ArCROCH3]+. Fragmentations yielding [M+ ? 49] from compounds 2 are abnormal and probably involve the methoxyl and nitro groups. The intense peak at m/z 130 due to [CH3OCH2CNNHCONH2]+ from compounds 3 corresponds to α-cleavage of the molecular ion. Some other fragments from these new compounds are interpreted in this paper.  相似文献   

8.
2,3‐Dihydro‐4H‐thiopyrano[2,3‐b]pyridin‐4‐ones 4 were prepared by a three‐step sequence from commercially available 2‐chloropyridine ( 1 ). Thus, successive treatment of 1 with iPr2NLi (LDA) and α,β‐unsaturated aldehydes gave 1‐(2‐chloropyridin‐3‐yl)alk‐2‐en‐1‐ols 2 , which were oxidized with MnO2 to 1‐(2‐chloropyridin‐3‐yl)alk‐2‐en‐1‐ones 3 . The reactions of 3 with NaSH?n H2O proceeded smoothly at 0° in DMF to provide the desired thiopyranopyridinones. Similarly, 2,3‐dihydro‐4H‐thiopyrano[2,3‐c]pyridin‐4‐ones 8 and 2,3‐dihydro‐4H‐thiopyrano[3,2‐c]pyridin‐4‐ones 12 were obtained starting from 3‐chloropyridine ( 5 ) and 4‐chloropyridine ( 9 ), respectively.  相似文献   

9.
The synthesis, optical resolution, determination of absolute configuration and conformational preference, and spectroscopic characteristics of terminally protected (blocked) derivatives and short peptides of 2‐amino‐1,2,3,6‐tetrahydro‐6‐oxocyclopenta[c]fluorene‐2‐carboxylic acid (FlAib), a novel, rigid, chiral, cyclized Cα,α‐disubstituted glycine are described.  相似文献   

10.
The phase‐transfer catalyzed polycondensation of α,α′‐dichloro‐p‐xylene with 4,4′‐isopropylidenediphenol was carried out using benzylethylammonium chloride in a two‐phase system of an aqueous alkaline solution and benzene at 60 °C under nitrogen atmosphere. The rate of polycondensation was expressed as the combined terms of quaternary onium cation and 4,4′‐isopropylidenediphenolate anion rather than the feed concentration of catalyst and 4,4′‐isopropylidenediphenol. The measured concentrations of hydroxide and chloride anion in the aqueous solution and α,α′‐dichloro‐p‐xylene in the organic phase were used to obtain the reaction rate constant with the integral method, and to analyze the polycondensation mechanism with a cyclic phase‐transfer initiation step in the heterogeneous liquid–liquid system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3059–3066, 2000  相似文献   

11.
The title compounds, the P(3)‐axially and P(3)‐equatorially substituted cis‐ and trans‐configured 8‐benzyl‐3‐fluoro‐2,4‐dioxa‐8‐aza‐3‐phosphadecalin 3‐oxides (=8‐benzyl‐3‐fluoro‐2,4‐dioxa‐8‐aza‐3‐phosphabicyclo[4.4.0]decane 3‐oxides=2‐fluorohexahydro‐6‐(phenylmethyl)‐4H‐1,3,2‐dioxaphosphorino[5,4‐c]pyridine 2‐oxides) were prepared (ee>98%) and fully characterized (Schemes 2 and 3). The absolute configurations were established from that of their precursors, the enantiomerically pure cis‐ and trans‐1‐benzyl‐4‐hydroxypiperidine‐3‐methanols which were unambiguously assigned. Being configuratively fixed and conformationally constrained phosphorus analogues of acetyl γ‐homocholine (=3‐(acetyloxy)‐N,N,N‐trimethylpropan‐1‐aminium), they are suitable probes for the investigation of molecular interactions with acetylcholinesterase. As determined by kinetic methods, all of the compounds are weak inhibitors of the enzyme.  相似文献   

12.
A sequential one‐pot four‐component reaction for the efficient synthesis of novel 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] derivatives 5 in the presence of AcONH4 as a neutral, inexpensive, and dually activating catalyst is described (Scheme 1). The syntheses are achieved by reacting ninhydrin ( 1 ) with benzene‐1,2‐diamines 2 to give indenoquinoxalines, which are trapped in situ by malono derivatives 2 and various α‐methylenecarbonyl compounds 4 through cyclization, providing the multifunctionalized 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] analogs 5 . This chemistry provides an efficient and promising synthetic way of proceeding for the diversity‐oriented construction of the spiro[indenoquinoxalino‐pyran] skeleton.  相似文献   

13.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

14.
In contrast to the traditional multistep synthesis, herein an efficient and fewer‐steps new synthetic strategy is demonstrated for the facile preparation of organic‐electronically important D–π–A–π–D‐type oligoaryls through sequential direct C?H arylations. This methodology has shown that the synthesis of thieno[3,4‐c]pyrrole‐4,6‐dione (TPD)‐ or furano[3,4‐c]pyrrole‐4,6‐dione (FPD)‐centred target molecules could be accessed step‐economically either from the core structure (acceptor) or from the end structure (donor), which supplied a more flexible and succinct new synthetic alternative to the preparation of the π‐functional small‐molecule semiconducting materials. In addition, optical and electrochemical properties of the synthesized oligoaryls were examined.  相似文献   

15.
A convenient procedure for the preparation of a new type of thiophthalides, 3‐alkoxybenzo[c]thiophen‐1(3H)‐ones 4 and 9 has been developed. Thus, 1‐(dialkoxymethyl)‐2‐lithiobenzenes, generated by Br/Li exchange between 2‐bromo‐1‐(dialkoxymethyl)benzenes 1 and 6 , and BuLi, react with isothiocyanates to afford N‐substituted 2‐(dialkoxymethyl)benzothioamides 2 and 7 , which, on treatment with a catalytic amount of TsOH?H2O, give N‐substituted 3‐alkoxybenzo[c]thiophen‐1(3H)‐imines 3 and 8 . The latter are hydrolyzed under acidic conditions to the desired products 4 and 9 , respectively.  相似文献   

16.
A synthetic route to the pyrrolo[1,2‐a]indole ring system (benzannulated pyrrolizidine) involving a base‐induced intramolecular aza‐Michael reaction as the key C? N bond‐forming penultimate step, followed by a Cu‐catalyzed intramolecular α‐arylation reaction, to provide the tricyclic framework over six steps is described.  相似文献   

17.
In this paper, we describe a two‐step synthesis of a series of tacrine analogues. In the first step, α,α'‐bis(substituted‐benzylidene)cycloalkanones are reacted with malononitrile to afford 2‐amino‐3‐cyano‐4H‐pyrans. The second step involves the conversion of pyrans to pyrano[2,3‐b]pyridines with the use of AlCl3 as catalyst.  相似文献   

18.
The polyfluorinated title compounds, [M Cl2(C16H16F4N2O2)] or [4,4′‐(HCF2CH2OCH2)2‐2,2′‐bpy]M Cl2 [M = Pd, ( 1 ), and M = Pt, ( 2 )], have –C(Hα)2OC(Hβ)2CF2H side chains with H‐atom donors at the α and β sites. The structures of ( 1 ) and ( 2 ) are isomorphous, with the nearly planar (bpy)M Cl2 molecules stacked in columns. Within one column, π‐dimer pairs alternate between a π‐dimer pair reinforced with C—H…Cl hydrogen bonds (α,α) and a π‐dimer pair reinforced with C—Hβ…F(—C) interactions (abbreviated as C—Hβ…F—C,C—Hβ…F—C). The compounds [4,4′‐(CF3CH2OCH2)2‐2,2′‐bpy]M Cl2 [M = Pd, ( 3 ), and M = Pt, ( 4 )] have been reported to be isomorphous [Lu et al. (2012). J. Fluorine Chem. 137 , 54–56], yet with disorder in the fluorous regions. The molecules of ( 3 ) [or ( 4 )] also form similar stacks, but with alternating π‐dimer pairs between the (α,β; α,β) and (β,β) forms. Through (C—)H…Cl hydrogen‐bond interactions, one molecule of ( 1 ) [or ( 2 )] is expanded into an aggregate of two inversion‐related π‐dimer pairs, one pair in the (α,α) form and the other pair in the (C—Hβ…F—C,C—Hβ…F—C) form, with the plane normals making an interplanar angle of 58.24 (3)°. Due to the demands of maintaining a high coordination number around the metal‐bound Cl atoms in molecule ( 1 ) [or ( 2 )], the ponytails of molecule ( 1 ) [or ( 2 )] bend outward; in contrast, the ponytails of molecule ( 3 ) [or ( 4 )] bend inward.  相似文献   

19.
New donor–π–acceptor (D–π–A) type conjugated copolymers, poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(4‐octylthiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐tTz), and poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(6‐octylthieno[3,2‐b]thiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐ttTz) were synthesized and characterized with the aim of investigating their potential applicability to organic photovoltaic active materials. While copolymer PBDT‐tTz showed a zigzagged non‐linear structure by thiophene π‐bridges, PBDT‐ttTz had a linear molecular structure with thieno[3,2‐b]thiophene π‐bridges. The optical, electrochemical, morphological, and photovoltaic properties of PBDT‐tTz and PBDT‐ttTz were systematically investigated. Furthermore, bulk heterojunction photovoltaic devices were fabricated by using the synthesized polymers as p‐type donors and [6,6]‐phenyl‐C71‐butyric acid methyl ester as an n‐type acceptor. PBDT‐ttTz showed a high power conversion efficiency (PCE) of 5.21% as a result of the extended conjugation arising from the thienothiophene π‐bridges and enhanced molecular ordering in the film state, while PBDT‐tTz showed a relatively lower PCE of 2.92% under AM 1.5 G illumination (100 mW/cm2). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1978–1988  相似文献   

20.
Heptalenecarbaldehydes 1 / 1′ as well as aromatic aldehydes react with 3‐(dicyanomethylidene)‐indan‐1‐one in boiling EtOH and in the presence of secondary amines to yield 3‐(dialkylamino)‐1,2‐dihydro‐9‐oxo‐9H‐indeno[2,1‐c]pyridine‐4‐carbonitriles (Schemes 2 and 4, and Fig. 1). The 1,2‐dihydro forms can be dehydrogenated easily with KMnO4 in acetone at 0° (Scheme 3) or chloranil (=2,3,5,6‐tetrachlorocyclohexa‐2,5‐diene‐1,4‐dione) in a ‘one‐pot’ reaction in dioxane at ambient temperature (Table 1). The structures of the indeno[2,1‐c]pyridine‐4‐carbonitriles 5′ and 6a have been verified by X‐ray crystal‐structure analyses (Fig. 2 and 4). The inherent merocyanine system of the dihydro forms results in a broad absorption band in the range of 515–530 nm in their UV/VIS spectra (Table 2 and Fig. 3). The dehydrogenated compounds 5, 5′ , and 7a – 7f exhibit their longest‐wavelength absorption maximum at ca. 380 nm (Table 2). In contrast to 5 and 5′, 7a – 7f in solution exhibit a blue‐green fluorescence with emission bands at around 460 and 480 nm (Table 4 and Fig. 5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号