首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Co(II), Ni(II), Cu(II) and Zn(II) Schiff base complexes derived from 3-hydrazinoquionoxaline-2-one and 1,2-diphenylethane-1,2-dione were synthesized. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV–vis, 1H NMR, 13C NMR, ESR, and mass spectral studies. Thermal studies of the ligand and its metal complexes were also carried out to determine their thermal stability. Octahedral geometry has been assigned for Co(II), Ni(II), and Zn(II) complexes, while Cu(II) complex has distorted octahedral geometry. Powder XRD study was carried out to determine the grain size of ligand and its metal complexes. The electrochemical behavior of the synthesized compounds was investigated by cyclic voltammetry. For all complexes, a 2 : 1 ligand-to-metal ratio is observed. The ligand and its metal complexes were screened for their activity against bacterial species such as E. coli, P. aeruginosa, and S. aureus and fungal species such as A. niger, C. albicans, and A. flavus by disk diffusion method. The DNA-binding of the ligand and its metal complexes were investigated by electronic absorption titration and viscosity measurement studies. Agarose gel electrophoresis was employed to determine the DNA-cleavage activity of the synthesized compounds. Density functional theory was used to optimize the structure of the ligand and its Zn(II) complex.  相似文献   

2.
1,2‐O‐Cyclohexylidene‐4‐aza‐8‐aminooctane (L) has been synthesized starting from 1‐chloro‐2,3‐O‐cyclohexylidene, which has been prepared by the reaction of epichlorohydrin with cyclohexanone. The complexes of this ligand with Co(II), Ni(II), Cu(II), and UO2(VI) salts were prepared. The structures of the ligand and its complexes are proposed based on elemental analyses, IR, UV‐vis, 1H, and 13C NMR spectra, magnetic susceptibility measurements, thermogravimetric analyses, and differential thermal analyses. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:254–260, 2000  相似文献   

3.
The Schiff base tetradentate ligands N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H2L1), N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H2L2), N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H2L3) and N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H2L4) were prepared from the reaction between 5-oxo-3-methyl-1-p-tolyl-1H-pyrazole-4-carbaldehyde or 4-(4-formyl-5-oxo-3-methyl-pyrazol-1-yl)-benzenesulfonic acid and o-phenylenediamine or ethylenediamine. And these are characterized by elemental analysis, FT-IR, 1H NMR and GC–MS. The corresponding Schiff base complexes of Mn(III) were prepared by condensation of [Mn33-O)(OAc)6(H2O)3]·3H2O with ligands H2L1, H2L2, H2L3 and H2L4. All these complexes have been characterized by elemental analysis, magnetic susceptibility, X-ray crystallography, conductometry measurement, FT-IR, electronic spectra and mass (FAB) spectrometry. Thermal behaviour of the complexes has been studied by TGA, DTA and DSC. Electronic spectra and magnetic susceptibility measurements indicate octahedral stereochemistry of manganese (III) complexes, while non-electrolytic behaviour complexes indicate the absence of counter ion.  相似文献   

4.
Three-component condensation of cyanothioacetamide with acetaldehyde and 1-(prop-1-en-2-yl)-piperidine afforded 4,6-dimethyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile which was alkylated with alkyl halides to obtain substituted 2-alkylsulfanyl-4,6-dimethylpyridine-3-carbonitriles, (3-amino-4,6-dimethylthieno-[2,3-b]pyridin-2-yl)(4-cyclohexylphenyl)methanone, and 2,2′-[ethane-1,2-diylbis(sulfanediyl)]bis(4,6-dimethylpyridine-3-carbonitrile).  相似文献   

5.
The reaction of [Ti(NR)Cl(2)(py)(3)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) with [{Li(bdmpza)(H(2)O)}(4)][bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and [{Li(bdmpzdta)(H(2)O)}(4)][bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] affords the corresponding complexes [Ti(NR)Cl(kappa(3)-bdmpzx)(py)](x = a, R = (t)Bu 1, p-tolyl 2, 2,6-C(6)H(3)(i)Pr(2) 3; x = dta, R =(t)Bu 4, p-tolyl , 2,6-C(6)H(3)(i)Pr(2) 6), which are the first examples of imido Group 4 complexes stabilized by heteroscorpionate ligands. The solid-state X-ray crystal structure of 1 has been determined. The titanium centre is six-coordinate with three fac-sites occupied by the heteroscorpionate ligand and the remainder of the coordination sphere being completed by chloride, imido and pyridine ligands. The complexes are 1-6 fluxional at room temperature. The pyridine ortho- and meta-proton resonances show evidence of dynamic behaviour for this ligand and variable-temperature NMR studies were carried out in order to study their dynamic behaviour in solution. The complexes [Nb(NR)Cl(3)(py)(2)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) reacted with [{Li(bdmpza)(H(2)O)}(4)] and (Hbdmpze)[bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide], the latter with prior addition of (n)BuLi, to give the complexes [Nb(NR)Cl(2)(kappa(3)-bdmpzx)](x = a, R =(t)Bu 7, p-tolyl 8, 2,6-C(6)H(3)(i)Pr(2) 9; x = e, R = (t)Bu 10, p-tolyl 11, 2,6-C(6)H(3)(i)Pr(2)) 12 and these are the first examples of imido Group 5 complexes with heteroscorpionate ligands. The structures of these complexes have been determined by spectroscopic methods.  相似文献   

6.
A new Schiff base, {1-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-4-phenyl-2-thioxo-1, 2-dihydro-pyrimidin-5-yl}-phenyl-methanone, has been synthesized from N-amino pyrimidine-2-thione and 2-hydroxynaphthaldehyde. Metal complexes of the Schiff base were prepared from acetate/chloride salts of Cu(II), Co(II), Ni(II), Zn(II), and Cd(II) in methanol. The chemical structures of the Schiff-base ligand and its metal complexes were confirmed by elemental analyses, IR, 13C-NMR, 1H-NMR, API-ES, UV-Visible spectroscopy, magnetic susceptibility, and thermogravimetric analyses. The electronic spectral data and magnetic moment measurements suggest mononuclear octahedral and mononuclear or binuclear square planar structures for the metal complexes. In light of these results, it was suggested that this ligand coordinates to each metal atom by hydroxyl oxygen, azomethine nitrogen, and thione sulfur to form octahedral complexes with Cd(II) and Zn(II).  相似文献   

7.
New metal complexes of (Zn(II), Co(II), Ni(II) and Cu(II)) based on the ligand 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzo[d]imidazole] were synthesized, whose structures were determined with the different spectroscopic techniques 1H NMR,13C NMR, FT-IR, UV–Visible and by mass spectrometry. The thermal analysis was performed by TG-DTA. The antioxidant activity of the ligand and its complexes was evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) method, in comparison with the synthetic antioxidant, ascorbic acid. The results obtained showed that the antioxidant activity of the ligand and its complexes is moderate and that the copper complex has a high activity that exceeds that of ascorbic acid. Antimicrobial activity of the ligand and its metal complexes was studied against two Gram-positive bacteria: Bacillus subtilis ILP1428B, Staphylococcus aureus CIP543154 and two Gram-negative bacteria: Pseudomonas aeruginosa ATCC27653, Escherichia coli CIP5412 (American Type Culture Collection)the activity data show that the metal complexes are more potent than the free ligand.  相似文献   

8.

In this study, 1,2-dihdroxyimino-3,7-di-aza-9,10-O-iso-propylidene decane (LH2 ) was synthesized starting from 1,2-O-iso-propylidene-4-aza-7-aminoheptane (RNH2 ) and anti-chloroglyoxime. Complexes of this ligand with Ni(II), Co(II), Cu(II) and UO2(VI) salts were prepared. Structures of the ligand and its complexes are proposed based on elemental analyses, IR, 13C and 1H NMR spectra magnetic susceptibility measurements and thermogravimetric analyses (TGA).  相似文献   

9.
Several mixed ligand complexes [M(II)(PN)(B)] [M(II) = Ni(II), Cu(II), and Zn(II)] derived from pyridoxine (PN) and imidazoles (B), namely imidazole (him), benzimidazole (bim), histamine (hist), and L-histidine (his), were synthesized. The complexes are characterized by elemental analysis, IR, UV-Vis 1H NMR, and ESR spectroscopy. In [M(II)(PN)B], the monovalent anion of PN is bidentate to M(II) (–O, –OH), him, bim monodentate (–N), hist bidentate (–N, –N), and his tridentate (–O, –N, –N). Magnetic moment studies showed that the Ni(II) complexes and Cu(II)–PN–his have octahedral configuration while the other Cu(II) complexes have distorted tetrahedral geometry. The g /A values calculated from the X-band ESR spectra of Cu(II) complexes in DMSO at 300 and 77 K supports the geometry. The thermal behavior (TG/DTA) of the synthesized complexes indicates the presence of lattice as well as coordinated water in the complexes. The in vitro biological activity of the mixed ligand complexes was tested against common bacteria, yeast, and fungi. The results in comparison with the control indicate that most of the complexes exhibit higher biological activities. The oxidative DNA cleavage studies of the mixed ligand complexes were performed using gel electrophoresis.  相似文献   

10.
Two new iridium(III) complexes containing benzothiazol-2-yl carbazole derivative as a cyclometalated ligand (L) and picolinate (pic) or acetylacetonate (acac) as the ancillary ligand, Ir(III) bis(3-(benzothiazol-2-yl)-9-butyl-carbazole)(picolinate) [Ir(L)2(pic)] and Ir(III) bis(3-(benzothiazol-2-yl)-9-butyl-carbazole)(acetylacetonate) [Ir(L)2(acac)], were synthesized and characterized by elemental analysis, 1H NMR, FT-IR, and UV–Vis absorption spectra. Both the iridium(III) complexes emit intense green–yellow emissions, indicating that they are useful for the fabrication of organic light-emitting diodes.  相似文献   

11.
A new heterocyclic compound N-(5-benzoyl-2-oxo-4-phenyl-2H-pyrimidin-1-yl)-oxalamic acid has been synthesized from N-amino pyrimidine-2-one and oxalylchloride. Bis-chelate complexes of the ligand were prepared from acetate/chloride salts of Cu(II), Co(II), Mn(II), Ni(II), Zn(II), Cd(II), and Pd(II) in methanol. The structures of the ligand and its metal complexes were characterized by microanalyses, IR, AAS, NMR, API-ES, UV-Vis spectroscopy, magnetic susceptibility, and thermogravimetric analyses. An octahedral geometry has been suggested for all the complexes, except for Pd(II) complex, in which the metal center is square planar. Each ligand binds using C(2)=O, HN, and carboxylate. The cyclic voltammograms of the ligand and the complexes are also discussed. The new synthesized compounds were evaluated for antimicrobial activities against Gram-positive, Gram-negative bacteria and fungi using the microdilution procedure. The Cu(II) complex displayed selective and effective antibacterial activity against one Gram-positive spore-forming bacterium (Bacillus cereus ATCC 7064), two Gram-positive bacteria (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) at 40–80 µg mL?1, but poor activity against Candida species. The Cu(II) complex might be a new antibacterial agent against Gram-positive bacteria.  相似文献   

12.
The Schiff base bis-[4-hydroxycuomarin-3-yl]-1N,5N-thiocarbohydrazone, H2L, was prepared by the reaction of 4-hydroxycoumarine-3-carbaldehyde with thiocabohydrazide in 2:1 molar ratio. The ligand and its binuclear complexes with Cu(II), Ni(II), Zn(II), Co(II), Mn(II), Fe(III) and Cr(III) ions were characterized via elemental analysis, 1H NMR, mass spectrometry, infrared, and electronic spectra, as well as room temperature magnetic susceptibilities. Furthermore, the thermal stabilities of two representative complexes were also investigated. The Schiff base and its metal complexes were screened for their antifungal and antibacterial activities against different species of pathogenic fungi and bacteria and their biopotency have been discussed.  相似文献   

13.
Reactions of 1,2-di(o-aminophenylthio)ethane with 3-ethoxy-2-hydroxybenzaldehyde yield the new hexadentate N2S2O2 donor thioether Schiff base 1,2-bis(2-((2-(thio)phenylimino)methyl)-6-ethoxyphenol)ethane (H2L). Ni(II), Zn(II), Cd(II), and Hg(II) complexes of this ligand were prepared. Of these complexes, [NiL]·2H2O has been structurally characterized by X-ray crystallography. The coordination geometry around Ni(II) was described as octahedral. Zn(II), Cd(II), and Hg(II) complexes and the Schiff base ligand have been characterized by CHN analyses, molar conductivity, UV–vis, FT-IR, 1H, and 13C NMR spectroscopy.  相似文献   

14.
The synthesis and characterization of palladium(II) and platinum(II) complexes of isomeric bidentate 2-pyridyl-1,2,3-triazole “click” ligands is reported. The complexes have been fully characterized by elemental analysis, HRESI-MS, IR, UV–Vis, 1H and 13C NMR spectroscopy. Additionally, the molecular structures of the Pd(II) and Pt(II) complexes of the 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine ligand are confirmed by X-ray crystallography. Solution studies indicate the 2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine ligand forms more stable complexes with Pd(II) and Pt(II) than the isomeric 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine ligand.  相似文献   

15.
A series of homoleptic complexes of hexacoordinate cobalt(II) and copper(II) complexes with 3,5-disubstituted homo- and heteroscorpionate tris(pyrazolyl)borate anionic ligands (Tp′) were synthesized, i.e. bis[hydrotris(3-phenyl,5-methylpyrazol-1-yl)borato]cobalt(II), bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]cobalt(II) and bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]copper(II) and their structures were elucidated crystallographically. The complexes were also formed spontaneously during attempted metathesis of the corresponding Tp′M(NCS) complexes into Tp′M(OOCCH(OH)CH3) complexes. In the case of the analogous conversion applied for the thiocyanato [hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3,5-dimethylpyrazol-1-yl)boratocobalt(II) complex with sodium carboxylates (lactate, pyruvate and 2-hydroxybutyrate), the cross-transfer of pyrazolyl residues between starting anionic ligands was observed resulting in formation of bis-ligand homo- and heteroleptic Tp′CoTp″ complexes, where Tp′, Tp″ were tris(pyrazolyl)borates composed of n 3(5)-phenyl,5(3)-methylpyrazolyl and (3−n) 3,5-dimethylpyrazolyl residues (n=0–3) identified by mass spectrometry. Metathesis of thiocyanate in thiocyanato hydrotris(3-phenyl,5-methylpyrazol-1-yl)boratocobalt(II) into pyruvate led to the isolation of stable the pyruvato hydrotris(3-phenyl,5-methylpyrazol-1-yl)boratocobalt(II) complex, the structure of which was determined crystallographically. The Tp′ ligands are η3 coordinated to metal ions in every case, whereas the pyruvate anion is coordinated through carboxylate and carbonyl oxygen atoms to the cobalt center. Two rotational isomers distinguishable by 1H NMR spectroscopy for the hexacoordinate bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]cobalt(II) complex were detected in solution.  相似文献   

16.
Five mono‐nuclear silver(I) complexes with the ligand 2,9‐dimethyl‐1,10‐phenanthroline, namely [Ag(DPEphos)(dmp)]BF4 ( 1 ), [Ag(DPEphos)(dmp)]CF3SO3 ( 2 ), [Ag(DPEphos)(dmp)]ClO4 ( 3 ), [Ag(DPEphos)(dmp)]NO3 ( 4 ), and [Ag(dppb)(dmp)]NO3 · CH3OH ( 5 ) {DPEphos = bis[2‐(diphenylphosphanyl)phenyl]ether, dppb = 1,2‐bis(diphenylphosphanyl)benzene, dmp = 2,9‐dimethyl‐1,10‐phenanthroline} were characterized by X‐ray diffraction, IR, 1H NMR, 31P NMR and fluorescence spectroscopy. Their terahertz (THz) time‐domain spectra were also studied. In these complexes the silver(I), which is coordinated by two kinds of chelating ligands, adopts four‐coordinate modes to generate mono‐nuclear structures. In complexes 1 , 3 – 5 , offset π ··· π weak interactions exist between the neighboring benzene rings. In the 31P NMR spectra, there exist splitting signals (dd), which can be attributed to the coupling of the 107,109Ag–31P. All the emission peaks of these complexes are attributed to ligand‐centered excited states.  相似文献   

17.
1,2-bis(p-aminophenoxy)ethane was obtained with reduction of 1,2-bis(p-nitrophenoxy)ethane and Pd/C as catalyst in hydrazine hydrate. Co(II), Cu(II), and Ni(II) complexes of aromatic bidentate diamine were prepared. The structure of the ligand and its complexes were characterized by IR, elemental analysis, magnetic susceptibility, conductivimetry, UV-Vis and 1H NMR spectroscopy. The metal/ligand mole ratios were found to be 1:1. The general compositions of these complexes are found to be [CoLCl2], [CuLCl2], and [CoLCl2]. The text was submitted by the authors in English.  相似文献   

18.
A new 1,2‐dihydroquinazolinone, 2‐(2‐hydroxy‐phenyl)‐3‐[1‐(2‐oxo‐2H‐chromen‐3‐yl)‐ethylideneamino]‐2,3‐dihydro‐1H‐quinazolin‐4‐one (L) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been prepared. These were characterized by elemental, spectral [UV–visible, IR, NMR (1H, 13C and 2D heteronuclear correlation) and mass], conductance, magnetic susceptibility and thermal studies. The physicochemical data indicate that the ligand behaves as tridentate with ONO donor sequence towards the metal ions, and trigonal bipyramidal geometry was assigned for complexes. The ligand and its metal complexes were evaluated for their in vivo anti‐inflammatory and analgesic activity. The tested compounds have shown excellent activity, which are almost equipotent to the standard used in the study. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A new heterocyclic compound, N-(5-benzoyl-2-oxo-4-phenyl-2H-pyrimidin-1-yl)-malonamic acid, was synthesized from N-aminopyrimidine-2-one and malonyldichloride. Bis-chelate complexes of the ligand were prepared from acetate/chloride salts of Cu(II), Co(II), Ni(II), Mn(II), Zn(II), Cd(II), Fe(III), Cr(III), and Ru(III) in methanol. The structures of the ligand and its metal complexes were characterized by microanalyses, IR, NMR, API-ES, UV-Vis spectroscopy, magnetic susceptibility, and conductometric analyses. Octahedral geometry was suggested for all the complexes, in which the metal center coordinates to ONO donors of the ligand. Each ligand binds the metal using C=O, HN, and carboxylate. The cyclic voltammograms of the ligand and the complexes were also discussed. The compounds were evaluated for their antimicrobial activities against Gram-positive and Gram-negative bacteria, and fungi using microdilution procedure. The antimicrobial studies showed that Cu(II), Fe(III), and Ru(III) complexes exhibited good antibacterial activity against Gram-positive bacteria with minimum inhibitory concentrations between 20 and 80 µg mL?1. However, the ligand and the complexes possess weak efficacy against Gram-negative bacterium and Candida strains. As a result, we suggest that these complexes containing pyrimidine might be a new group of antibacterial agents against Gram-positive bacteria.  相似文献   

20.
New polymeric ligand (resin) was prepared by the condensation of thiosemicarbazides with formaldehyde in the presence of acidic medium. Thisemicarbazide–formaldehyde polymer–metal complexes were prepared with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) in 1:2 metal:ligand molar ratio. The polymeric ligand and its polymer–metal complexes were characterized by elemental analysis, thermogravimetric analysis (TGA), FTIR, 13C NMR and 1H NMR. The geometry of central metal ions was conformed by electronic (UV–vis) and EPR spectra. The antibacterial activities of all the synthesized polymers were investigated against Bacillus subtilis and Staphylococcus aureus (Gram‐positive) and Escherichia coli and Salmonella typhi (Gram‐negative). These compounds showed excellent activities against these bacteria using the shaking flask method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号