首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induced aggregation of achiral building blocks by a chiral species to form chiral aggregates with memorized chirality has been observed for a number of systems. However, chiral memory in isolated aggregates of achiral building blocks remains rare. One possible reason for this discrepancy could be that not much is understood in terms of designing these chiral aggregates. Herein, we report a strategy for creating such isolable chiral aggregates from achiral building blocks that retain chiral memory after the facile physical removal of the chiral templates. This strategy was used for the isolation of chiral homoaggregates of neutral achiral π-conjugated carboxylic acids in pure aqueous solution. Under what we have termed an "interaction-substitution" mechanism, we generated chiral homoaggregates of a variety of π-conjugated carboxylic acids by using carboxymethyl cellulose (CMC) as a mediator in acidic aqueous solutions. These aggregates were subsequently isolated from the CMC templates whilst retaining their memorized supramolecular chirality. Circular dichroism (CD) spectra of the aggregates formed in the acidic CMC solution exhibited bisignated exciton-coupled signals of various signs and intensities that were maintained in the isolated pure homoaggregates of the achiral π-conjugated carboxylic acids. The memory of the supramolecular chirality in the isolated aggregates was ascribed to the substitution of COOH/COOH hydrogen-bonding interaction between the carboxylic acid groups within the aggregates for the hydrogen-bonding interactions between the COOH groups of the building blocks and the chiral templates. We expect that this "interaction-substitution" procedure will open up a new route to isolable pure chiral aggregates from achiral species.  相似文献   

2.
Carotenoid microcrystals, extracted from cells of carrot roots and consisting of 95 % of achiral β‐carotene, exhibit a very intense chiroptical (ECD and ROA) signal. The preferential chirality of crystalline aggregates that consist mostly of achiral building blocks is a newly observed phenomenon in nature, and may be related to asymmetric information transfer from the chiral seeds (small amount of α‐carotene or lutein) present in carrot cells. To confirm this hypothesis, we synthesized several model aggregates from various achiral and chiral carotenoids. Because of the sergeant‐and‐soldier behavior, a small number of chiral sergeants (α‐carotene or astaxanthin) force the achiral soldier molecules (β‐ or 11,11′‐[D2]‐β‐carotene) to jointly form supramolecular assemblies of induced chirality. The chiral amplification observed in these model systems confirmed that chiral microcrystals appearing in nature might consist predominantly of achiral building blocks and their supramolecular chirality might result from the co‐crystallization of chiral and achiral analogues.  相似文献   

3.
Chiral structures created through the adsorption of molecules onto achiral surfaces play pivotal roles in many fields of science and engineering. Here, we present a systematic study of a novel chiral phenomenon on a surface in terms of organizational chirality, that is, meso‐isomerism, through coverage‐driven hierarchical polymorphic transitions of supramolecular assemblies of highly symmetric π‐conjugated molecules. Four coverage‐dependent phases of dehydrobenzo[12]annulene were uniformly fabricated on Ag(111), exhibiting unique chiral characteristics from the single‐molecule level to two‐dimensional supramolecular assemblies. All coverage‐driven phase transitions stem from adsorption‐induced pseudo‐diastereomerism, and our observation of a lemniscate‐type (∞) supramolecular configuration clearly reveals a drastic chiral phase transition from an enantiomeric chiral domain to a meso‐isomeric achiral domain. These findings provide new insights into controlling two‐dimensional chiral architectures on surfaces.  相似文献   

4.
A C3‐symmetric benzene‐1,3,5‐tricarboxamide substituted with ethyl cinnamate was found to self‐assemble into supramolecular gels with macroscopic chirality in a DMF/H2O mixture. The achiral compound simultaneously formed left‐ and right‐handed twists in an unequal number, thus resulting in the macroscopic chirality of the gels without any chiral additives. Furthermore, ester–amide exchange reactions with chiral amines enabled the control of both the handedness of the twists and the macroscopic chirality of the gels, depending on the structures of the chiral amines. These results provide new prospects for understanding and regulating symmetry breaking in assemblies of supramolecular gels formed from achiral molecular building blocks.  相似文献   

5.
A chiral perylene diimide building block has been prepared based on an amine derivative of the amino acid L ‐phenylalanine. Detailed studies were carried out into the self‐assembly behaviour of the material in solution and the solid state using UV/Vis, circular dichroism (CD) and fluorescence spectroscopy. For the charged building block BTPPP, the molecular chirality of the side chains is translated into the chiral supramolecular structure in the form of right‐handed helical aggregates in aqueous solution. Temperature‐dependent UV/Vis studies of BTPPP in aqueous solution showed that the self‐assembly behaviour of this dye can be well described by an isodesmic model in which aggregation occurs to generate short stacks in a reversible manner. Wide‐angle X‐ray diffraction studies (WXRD) revealed that this material self‐organises into aggregates with π–π stacking distances typical for π‐conjugated materials. TEM investigations revealed the formation of self‐assembled structures of low order and with no expression of chirality evident. Differential scanning calorimetry (DSC) and polarised optical microscopy (POM) were used to investigate the mesophase properties. Optical textures representative of columnar liquid–crystalline phases were observed for solvent‐annealed samples of BTPPP. The high solubility, tunable self‐assembly and chiral ordering of these materials demonstrate their potential as new molecular building blocks for use in the construction of chiro‐optical structures and devices.  相似文献   

6.
Through mimicking both the chiral and energy transfer in an artificial self‐assembled system, not only was chiral transfer realized but also a dual upconverted and downconverted energy transfer system was created that emit circularly polarized luminescence. The individual chiral π‐gelator can self‐assemble into a nanofiber exhibiting supramolecular chirality and circularly polarized luminescence (CPL). In the presence of an achiral sensitizer PdII octaethylporphyrin derivative, both chirality transfer from chiral gelator to achiral sensitizer and triplet‐triplet energy transfer from excited sensitizer to chiral gelator could be realized. Upconverted CPL could be observed through a triplet–triplet annihilation photon upconversion (TTA‐UC), while downconverted CPL could be obtained from chirality‐transfer‐induced emission of the achiral sensitizer. The interplay between chiral energy acceptor and achiral sensitizer promoted the communication of chiral and excited energy information.  相似文献   

7.
A water-soluble amphiphilic poly(phenylacetylene) bearing the bulky aza-18-crown-6-ether pendants forms a one-handed helix induced by l- or d-amino acids and chiral amino alcohols through specific host-guest interactions in water. We now report that such an induced helical poly(phenylacetylene) with a controlled helix sense can selectively trap an achiral benzoxazole cyanine dye among various structurally similar cyanine dyes within its hydrophobic helical cavity inside the polymer in acidic water, resulting in the formation of supramolecular helical aggregates, which exhibit an induced circular dichroism (ICD) in the cyanine dye chromophore region. The supramolecular chirality induced in the cyanine aggregates could be further memorized when the template helical polymer lost its optical activity and further inverted into the opposite helicity. Thereafter, thermal racemization of the helical aggregates slowly took place.  相似文献   

8.
Hierarchical supramolecular chiral liquid‐crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization‐induced chiral self‐assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene‐containing block copolymer (Azo‐BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo‐BCP assemblies. The supramolecular chirality of Azo‐BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

9.
Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the coaggregates by axial ligation with a Lewis base. After this extraction, the preferred helicity observed for the aggregates containing achiral Cu porphyrins reveals a chiral memory effect that is stable and can be erased and partially restored upon subsequent heating and cooling.  相似文献   

10.
A self-progressing chiral self-assembly form an achiral and C6-symmetric molecule, resulting in a chiral amplification with prolonging the time. The system shows three distinct luminescent colors with the change of time in the same solution system.  相似文献   

11.
Hierarchical supramolecular chiral liquid-crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization-induced chiral self-assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene-containing block copolymer (Azo-BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo-BCP assemblies. The supramolecular chirality of Azo-BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

12.
The inclusion and chiral recognition of racemic arylalkanols by supramolecular helical architectures consisting of enantiopure primary amines and achiral carboxylic acids were thoroughly studied. Among the architectures examined, a supramolecular helical architecture composed of the salt of enantiopure erythro-2-amino-1,2-diphenylethanol (1 b) and benzoic acid (2 a) was found to include a wide variety of racemic arylalkanols with recognition of their chirality. The helical architecture gave a dissymmetric 1D groove in the salt crystal, and the arylalkanols were enantioselectively included in the groove. The size and shape of the groove were tunable by proper selection of the achiral carboxylic acid component. The origin of the chiral recognition with the combination 1 b/2 a is discussed on the basis of X-ray crystallographic analyses.  相似文献   

13.
The presence of 10-13 M of chiral clusters of aromatic amino acids addresses aggregation of opposite-charged achiral porphyrin towards the formation of smart chiral assemblies. The latter supramolecular complexes are able to self-propagate and transfer their chiral information with a 100% yield. The chiral bias occurs through a correlated sequence of induction, memory, and amplification of chirality that strongly recalls possible prebiotic scenarios.  相似文献   

14.
Although the importance of circularly polarized luminescence (CPL) materials has been widely recognized, the CPL responses of supramolecular gels are still rarely studied. Moreover, developing CPL materials based on supramolecular gels is of great significance, due to their special advantages and important applications. Herein, we report the first circularly polarized supramolecular gels self-assembled exclusively from a simple achiral C 3-symmetric molecule. Most importantly, the excellent tunability of these novel CPL materials, which benefits from achiral molecular building blocks as well as the nature of supramolecular gels, has been investigated. Thus, the CPL intensity of these supramolecular gels is easily enhanced by mechanical stirring or doping chiral amines. The handedness of CPL signals is controlled by the chirality of organic amines.  相似文献   

15.
Recent studies on water‐splitting photoelectrochemical cells (PECs) have demonstrated the intriguing possibility of controlling the spin state in this chemical reaction to form H2 and O2 by exploiting the chirality of organic π‐conjugated supramolecular polymers. Although this fascinating phenomenon has been disclosed, the chiral supramolecular materials reported thus far are not optimized for acting as efficient photosensitizer for dye‐sensitized PECs. In this work we report on the design, synthesis, and characterization of chiral supramolecular aggregates based on C3‐symmetric triphenylamine‐based dyes that are able to both absorb visible light and control the spin state of the process. Variable temperature‐dependent spectroscopic measurements reveal the assembly process of the dyes and confirm the formation of chiral aggregates, both in solution as well as on solid supports. Photoelectrochemical measurements on TiO2‐based anodes validate the advantage of using chiral supramolecular aggregates as photosensitizer displaying higher photocurrent compared to achiral analogues. Moreover, fluorimetric tests for the quantification of the hydrogen peroxide produced, confirm the possibility of controlling the spin of the reaction exerting spin‐selection with chiral supramolecular polymers. These results represent a further step towards the next‐generation of organic‐based water‐splitting solar cells.  相似文献   

16.
Optically active amidine dimer strands having a variety of chiral and achiral linkers with different stereostructures are synthesized and used as templates for diastereoselective imine-bond formations between two achiral carboxylic acid monomers bearing a terminal aldehyde group and racemic 1,2-cyclohexanediamine, resulting in a preferred-handed double helix stabilized by complementary salt bridges. The diastereoselectivity of the racemic amine is significantly affected by the chirality of the amidine residues along with the rigidity and/or chirality of the linkers in the templates. NMR and kinetic studies reveal that the present imine-bond formation involves a two-step reversible reaction. The second step involves formation of a preferred-handed complementary double helix assisted by the chiral amidine templates and determines the overall reaction rate and diastereoselectivity of the amine.  相似文献   

17.
Multiple noncovalent interactions can drive self‐assembly through different pathways. Here, by coordination‐assisted changes in π‐stacking modes between chromophores in pyrene‐conjugated histidine (PyHis), a self‐assembly system with reversible and inversed switching of supramolecular chirality, as well as circularly polarized luminescence (CPL) is described. It was found that l ‐PyHis self‐assembled into nanofibers showing P‐chirality and right‐handed CPL. Upon ZnII coordination, the nanofibers changed into nanospheres with M‐chirality, as well as left‐handed CPL. The process is reversible and the M‐chirality can change to P‐chirality by removing the ZnII ions. Experimental and theoretical models unequivocally revealed that the cooperation of metal coordination and π‐stacking modes are responsible the reversible switching of supramolecular chirality. This work not only provides insight into how multiple noncovalent interactions regulate self‐assembly pathways.  相似文献   

18.
Reactions between the U‐shaped binuclear CuI complex A that bears short metal–metal distances and the cyano‐capped monotopic π‐conjugated ligands 1 – 5 that carry gradually bulkier polyaromatic terminal fragments lead to the formation of π‐stacked supramolecular assemblies 6 – 10 , respectively, in yields of 50–80 %. These derivatives have been characterized by multinuclear NMR spectroscopic analysis and X‐ray diffraction studies. Their solid‐state structures show the selective formation of U‐shaped supramolecular assemblies in which two monotopic π‐conjugated systems present large ( 6 , 7 , and 9 ) or medium ( 8 and 10 ) intramolecular π overlap, thus revealing π–π interactions. These assemblies self‐organize into head‐to‐tail π‐stacked dimers that in turn self‐assemble to afford infinite columnar π stacks. The nature, extent, and complexity of the intermolecular contacts within the head‐to‐tail π‐stacked dimer depend on the nature of the terminal polyaromatic fragment carried by the cyano‐capped monotopic ligand, but it does not alter the result of the self‐assembling process. These results demonstrate that the dinuclear molecular clip A that bears short metal–metal distances allows selective supramolecular assembly processes driven by the formation of intra‐ and intermolecular short π–π interactions in the resulting self‐assembled structures; thus, demonstrating that their shape is not only dictated by the symmetry of the building blocks. This approach opens perspectives toward the formation of extended π‐stacked columns based on dissymmetrical and functional π‐conjugated systems.  相似文献   

19.
介绍了超分子手性的基本构筑方式及其特点,分别从手性分子组装、手性分子诱导非手性分子及非手性分子组装等3个方面对最近几年来在手性超分子组装领域内的重要成果及最新进展进行了综述,并对这一领域的发展前景作了展望。  相似文献   

20.
In the presence of tryptophan (Trp), complex micelles were prepared by 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) and poly(ethylene glycol)-block-poly(2-(dimethylamino)ethyl methylacrylate) (PEG-b-PDMAEMA) in aqueous solutions at pH 1.8. Different mixing sequences led to different morphologies. Spheres and nanorods of small size were obtained in sequence I (P/Trp+TPPS) where TPPS was added into the mixed solution of PEG-b-PDMAEMA and Trp. More nanorods of larger length were achieved in sequence II (TPPS/Trp+P) where the copolymer was added as the last component. Two types of supramolecular chirality of TPPS aggregates caused by mixing sequences were investigated. In (P/Trp+TPPS), the circular dichroism (CD) signal of H-band was in line with the chirality of Trp while that of J-band exhibited an opposite signal (Chirality I). In (TPPS/Trp+P), chiral signals at both H- and J-bands followed that of Trp (Chirality II). The conversion between the two types of chirality can be accomplished by modulating the molar ratio of the repeating units on block PDMAEMA to TPPS, or a cycle of pH 1.8-5.5-1.8 processing on the micelle solution. In addition, the supramolecular chirality can be memorized via strong electrostatic interaction with achiral copolymer even after removal of the chiral template, but only Chirality II can be cyclically "switched-off-on".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号