首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A ladder polysilsesquioxanes with side chain of dibenzothiophene groups (BS-LPSQ) was successfully synthesized. The ladder structure of BS-LPSQ was characterized by MALDI-TOF MS, XRD, and (1)H?NMR spectroscopy. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and spectroscopic analyses revealed that the BS-LPSQ has good film-forming ability, high thermal and morphological stability, and good miscibility to the dopant iridium bis(4,6-difluorophenyl)pyridinato-N,C(2)-picolinate (FIrpic), high triplet energy, and a wide bandgap. In addition, compared with the ringed polysiloxane BS-PSQ phosphorescent host material reported previously, the ladder structure of BS-LPSQ has not only a higher thermal resistance, but also could prevent molecular aggregation and effectively avoid quenching of fluorescence. Thus, the BS-LPSQ may be used as a better host for the blue-light-emitting iridium complex FIrpic. The performance of the electrophosphorescent device, based on the ladder BS-LPSQ as the active layer, is superior to that of ringed BS-PSQ and any other polyhedral oligomeric silsesquioxane (POSS)-based or polymer host materials.  相似文献   

2.
We designed a 3,6‐dibromo‐9‐hexyl‐9H‐carbazole derivative with the blue emissive iridium complex bis[2‐(4,6‐difluorophenyl)pyridyl‐N,C2′](picolinato)iridium(III) (FIrpic) linked at the alkyl terminal. Based on this monomer, novel 3,6‐carbazole‐alt‐tetraphenylsilane copolymers grafted with FIrpic were synthesized by palladium‐catalyzed Suzuki coupling reaction, and the content of FIrpic in the polymers could be controlled by feed ratio of the monomers. The polymer films mainly show blue emission from FIrpic, and the emission intensity from the polymer backbones is much weaker compared with the doped analogues, which demonstrates an efficient energy transfer from polymeric host to covalently bonded guest. The phase separation in the polymers was suppressed, which can be identified by atomic force microscopy and designed electroluminescent (EL) devices. EL devices based on the polymers exhibited blue phosphorescence from FIrpic. The luminous efficiency of preliminary devices reached 2.3 cd/A, and the efficiency roll‐off at high current densities was suppressed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1859–1865, 2010  相似文献   

3.
We report novel host polymers for a high‐efficiency polymer‐based solution‐processed phosphorescent organic light‐emitting diode with typical blue‐emitting dopant bis(4,6‐difluorophenylpyridinato‐N,C2)iridium(III) picolinate (FIrpic). The host polymers, soluble polynorbornenes with pendant carbazole derivatives, N‐phenyl‐9H‐carbazole ( P1 ), N‐biphenyl‐9H‐carbazole ( P2 ), and 9,9′‐(1,3‐phenylene)bis‐9H‐carbazole (mCP) ( P3 ) are efficiently synthesized by vinyl addition polymerization of norbornene monomers using Pd(II) catalyst in combination with 1‐octene chain transfer agent. The polymers exhibit high thermal stability with high decomposition (Td5 > 410 °C) and glass transition temperatures (Tg ≈ 268 °C). The HOMO (ca. ?5.5 to ?5.7 eV) and LUMO (ca. ?2.0 to ?2.1 eV) levels with the high triplet energy of about 2.7–3.0 eV suggest that the polymers are suitable for a host material for blue emitters. Among the solution‐processed devices that were fabricated based on the emissive layers containing the P1 ? P3 host doped with various concentrations of FIrpic (7–13 wt %), the best device with P3 host exhibits power efficiency of 3.0 lm W?1 and external quantum efficiency of 4.0% at a luminance of 1000 cd m?2 that is outstanding among the polymeric rivals. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
A novel silicon‐based compound, 10‐phenyl‐2′‐(triphenylsilyl)‐10H‐spiro[acridine‐9,9′‐fluorene] (SSTF), with spiro structure has been designed, synthesized, and characterized. Its thermal, electronic absorption, and photoluminescence properties were studied. Its energy levels make it suitable as a host material or exciton‐blocking material in blue phosphorescent organic light‐emitting diodes (PhOLEDs). Accordingly, blue‐emitting devices with iridium(III) bis[(4,6‐difluorophenyl)‐pyridinato‐N,C2′]picolinate (FIrpic) as phosphorescent dopant have been fabricated and show high efficiency with low roll‐off. In particular, 44.0 cd A?1 (41.3 lm W?1) at 100 cd m?2 and 41.9 cd A?1 (32.9 lm W?1) at 1000 cd m?2 were achieved when SSTF was used as host material; 28.1 lm W?1 at 100 cd m?2 and 20.6 lm W?1 at 1000 cd m?2 were achieved when SSTF was used as exciton‐blocking layer. All of the results are superior to those of the reference devices and show the potential applicability and versatility of SSTF in blue PhOLEDs.  相似文献   

5.
In this study, two new dibenzofuran derivatives featuring one or two cyanocarbazole units, 6‐(dibenzo[b,d]furan‐4‐yl)‐9‐phenyl‐9H‐carbazole‐3‐carbonitrile ( mBFCzCN) and 6,6′‐(dibenzo[b,d]furan‐4,6‐diyl)bis(9‐phenyl‐9H‐carbazole‐3‐carbonitrile) ( dBFCzCN ), were developed as host materials for phosphorescent organic light emitting diodes (PhOLEDs). A new molecular design connecting the cyanocarbazole to the dibenzofuran using the cyanocarbazole 6‐position instead of its 9‐position was created, and the effects of number of cyanocarbazole units in the dibenzofuran building block on the photophysical and electroluminescence properties were investigated in detail. The mBFCzCN compound revealed high triplet energy (2.78 eV) than that of dBFCzCN (2.68 eV) and good bipolar charge transporting properties. The potential of these materials as hosts for blue and green PhOLEDs was investigated using bis(4,6‐(difluorophenyl)pyridinato‐N,C2′)picolinate iridium(III) (FIrpic) and tris(2‐phenylpyridinato)iridium(III) (Ir(ppy)3) dopants, respectively. The results indicated that the mBFCzCN with one cyanocarbazole unit showed better device performance than the dBFCzCN with two cyanocarbazole units in the blue and green devices. High external quantum efficiencies of 19.0 and 21.2 % were demonstrated in the blue and green PhOLEDs with the mBFCzCN host due to its high triplet energy and good bipolar charge transporting characteristics.  相似文献   

6.
An adamantane‐based host material, namely, 4‐{3‐[4‐(9H‐carbazol‐9‐yl)phenyl]adamantan‐1‐yl}benzonitrile (CzCN‐Ad), was prepared by linking an electron‐donating carbazole unit and an electron‐accepting benzonitrile moiety through an adamantane bridge. In this approach, two functional groups were attached to tetrahedral points of adamantane to construct an “sp3” topological configuration. This design strategy endows the host material with a high triplet energy of 3.03 eV due to the disruption of intramolecular charge transfer. Although CzCN‐Ad has a low molecular weight, the rigid nonconjugated adamantane bridge results in a glass transition temperature of 89 °C. These features make CzCN‐Ad suitable for fabricating blue phosphorescent organic light‐emitting diodes (PhOLEDs). The devices based on sky‐blue phosphor bis[(4,6‐difluorophenyl)pyridinato‐N,C2′](picolinato)iridium(III) (FIrpic) achieved a high maximum external quantum efficiency (EQE) of 24.1 %, which is among the best results for blue PhOLEDs ever reported. Furthermore, blue PhOLEDs with bis(2,4‐difluorophenylpyridinato)‐tetrakis(1‐pyrazolyl)borate iridium(III) (FIr6) as dopant exhibited a maximum EQE of 14.2 % and a maximum luminance of 34 262 cd m?2. To the best of our knowledge, this is the highest luminance ever reported for FIr6‐based PhOLEDs.  相似文献   

7.
A new oligosiloxane derivative (ODCzMSi) functionalized with the well‐known 1,3‐bis(9‐carbazolyl)benzene (mCP) pendant moiety, directly linked to the silicon atom of the oligosiloxane backbone, has been synthesized and characterized. Compared to mCP, the attachment of the oligosiloxane chain significantly improves the thermal and morphological stabilities with a high decomposition temperature (Td=540 °C) and glass transition temperature (Tg=142 °C). The silicon–oxygen linkage of ODCzMSi disrupts the backbone conjugation and maintains a high triplet energy level (ET=3.0 eV). A phosphorescent organic light‐emitting diode (PhOLED) using iridium bis(4,6‐difluorophenyl)pyridinato‐N,C2 picolinate (FIrpic) as the emitter and ODCzMSi as the host shows a relatively low turn‐on voltage of 5.0 V for solution‐processed PhOLEDs, maximum external quantum efficiency of 9.2 %, and maximum current efficiency of 17.7 cd A?1. The overall performance of this device is competitive with the best reported solution‐processed blue PhOLEDs. Memory devices using ODCzMSi as an active layer exhibit non‐volatile write‐once read‐many‐times (WORM) characteristics with high stability in retention time up to 104 s and a low switch on voltage. This switching behaviour is explained by different stable conformations of ODCzMSi with high or low conductivity states which are obtained under the action of electric field through a π–π stacking alignment of the pendant aromatic groups. These results with both PhOLEDs and memory devices demonstrate that this oligosiloxane–mCP hybrid structure is promising and versatile for high performance solution‐processed optoelectronic applications.  相似文献   

8.
Novel photo‐crosslinkable hole‐transport and host materials incorporated into multilayer blue phosphorescent polymer light‐emitting diodes (Ph‐PLEDs) were demonstrated in this study. The oxetane‐containing copolymers, which function as hole‐transport layers (HTL), could be cured by UV irradiation in the presence of a cationic photoinitiator. The composition of the two monomers was varied to yield three different hole‐transporting copolymers, [Poly(9,9′‐(5‐(((4‐(7‐(4‐(((3‐methyloxetan‐3‐yl)methoxy)methyl)phenyl)octan‐3‐yl)benzyl)oxy)methyl)?1,3‐phenylene)bis(9H‐carbazole)) ( P(mCP‐Ox)‐I , ‐II , and ‐III )]. In addition, monomer 1 was copolymerized with styrene to produce copolymer P(mCP‐Ph) as a host material for bis[2‐(4,6‐difluorophenyl)pyridinato‐C2,N](picolinato)iridium(III) (FIrpic), a blue‐emitting dopant. All mCP‐based copolymers displayed high glass transition temperatures (Tg) of up to 130–140 °C and triplet energies of up to 3.00 eV. The blue Ph‐PLEDs exhibited a maximum external quantum efficiency of 2.55%, in addition to a luminous efficiency of 8.75 cd A?1 when using the device configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate)/ P(mCP‐OX)‐III / P(mCP‐Ph) :FIrpic(15 wt %)/3,3′‐[5′‐[3‐(3‐pyridinyl)phenyl][1,1′:3′,1′′‐terphenyl]‐3,3′′‐diyl]bispyridine/LiF/Al. The device bearing P(mCP‐Ox)‐III HTL, containing the highest composition of mCP unit, exhibited better performance than the other devices, which is attributed to induction of more balanced charge carriers and carrier recombination in the emissive layer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 707–718  相似文献   

9.
We prepared an iridium polymer complex having 2‐phenylpyridine as a η2‐cyclometallated ligand, a new OLED containing a solution‐processible iridium polymer as a host, and a phosphorescent iridium complex, [Ir(piq‐tBu)3] as a guest. This is the first example to apply a phosphorescent iridium complex polymer to a host material in a phosphorescent OLED. A phosphine copolymer ligand made from methyl methacrylate (MMA) and 4‐styryldiphenylphosphine can be used as an anchor polymer, which coordinates to luminescent iridium units to form a host metallopolymer easily. The OLED containing the host iridium‐complex polymer film, in which the guest, 2 wt % Ir(piq‐tBu)3, was doped, showed red electroluminescence as a result of efficient energy transfer from the iridium polymer host to the iridium guest. The maximum current efficiency of the device was 1.00, suggesting that a soluble iridium complex polymer can be used as a solution‐processible polymer host in EL devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4358–4365, 2009  相似文献   

10.
Two novel dendrimer-like blue-emitting dinuclear cyclometalated iridium (III) complexes, namely (DNaTPA)2DBF(FIrpic)2 and (DPyTPA)2DBF(FIrpic)2, have been successfully synthesized and characterized. In which FIrpic is an iridium (III) bis[(4,6-difluorophenyl)pyridinato-N,C2′]picolate blue-emitting phosphorescent chromophore core, DBF is a 2,7-diphenyl-9H-fluorene bridging core, DNaTPA and DPyTPA are deep blue-emitting fluorescent chromophores composed by rigid high-triplet-energy dendrons of triphenylamine-functionalized naphthalene or pyrene units, and the peripheral dendrons are connected with the ancillary ligand of the emitting core through nonconjugated ether linkage. Their photophysical, thermal, electrochemical, as well as electrophosphorescent properties were primarily studied. Both iridium (III) complexes exhibit high efficient blue emission in solution (38.5% and 19.2%) and a typical FIrpic emission in 1,3-bis(N-carbzolyl)benzene (mCP) matrix (27.0% and 24.1%). Simple bilayer phosphorescent organic light-emitting diodes (PHOLEDs) with a configuration of ITO/PEDOT:PSS/mCP:dopants/TmPyPB/Liq/Al achieved high efficiencies of 12.96 cd/A for current efficiency (CE), 6162 cd/m2 for brightness, 6.22% for external quantum efficiency (EQE), and 3.13 lm/W for power efficiency (PE) with Commission International de L'Eclairage (CIE) coordinates of (0.19 ± 0.01, 0.35 ± 0.02) at only 2 wt% blend of (DNaTPA)2DBF(FIrpic)2. (DPyTPA)2DBF(FIrpic)2-doped devices also reach efficiencies of (9.14 cd/A, 7167 cd/m2, 4.41%, 2.61 lm/W) at the same doping concentration. The results demonstrate that the introduction of dendritic blue-emitting fluorescent chromophore grafted into the blue phosphorescent chromosphere core through nonconjugated linkage is an efficient way to achieve high-efficiency sky-blue emission.  相似文献   

11.

Silicate‐based inorganic‐organic hybrid polymer systems have many unique properties including thermal stability and photo‐stability, chemical resistance with the combination of tunable optical properties. Two kinds of new UV‐patternable hybrid materials PSQ‐Ls were synthesized by a sol‐gel process at room temperature, which can be used for low cost fabrication of optical waveguides. Thick films (up to 8.31 µm) can be coated by a single spin‐coating process without any cracking and the average surface roughness (Ra), detected by atomic force microscopy (AFM), is below 0.5 nm. The optical properties (refractive index, birefringence, and optical loss at 1310 nm and 1550 nm, respectively) of the PSQ‐Ls films are investigated by a prism coupler. The refractive index of PSQ‐Ls can be exactly tuned from 1.4483 to 1.5212 by blending PSQ‐LH (nTE=1.5212 @ 1310 nm) and PSQ‐LL (nTE=1.4483 @ 1310 nm). The maximum refractive index contrast is about 4.8%. After post‐baking, birefringences of the films are below 0.0005 and optical losses are about 0.2 dB · cm?1 at 1310 nm, 0.7 dB · cm?1 at 1550 nm, respectively. Furthermore, the PSQ‐Ls films also show outstanding thermal stability in air atmospheres.  相似文献   

12.
We have synthesized a novel wide band gap polymer P36HCTPSi derived from 3,6‐carbazole and tetraphenylsilane by palladium‐catalyzed Suzuki coupling reaction. The resultant polymer shows a high glass transition temperature (217 °C) and good thermal stability. The conjugation length of P36HCTPSi is effectively confined because of the δ‐Si interrupted polymer backbone. The polymer exhibits a violet emission with a peak at 392 nm in solution, and the band gap estimated from the onset of its absorption is 3.26 eV. The high energy emission and wide band gap of P36HCTPSi make it appropriate host for green and blue emission phosphorescent materials. Efficient energy transfers from P36HCTPSi to both fac‐tris[2‐(2‐pyridyl‐kN)‐5‐methylphenyl]iridium(III) (green emission) and bis[(4,6‐difluorophenyl)pyridinato‐N,C2]‐(picolinato)iridium(III) (blue emission) were observed in photoluminescence (PL) spectra. Highly efficient phosphorescent polymer light‐emitting devices were realized by using P36HCTPSi as the host for iridium complexes, the maximum luminous efficiencies for green and blue devices were 27.6 and 3.4 cd/A, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4784–4792, 2009  相似文献   

13.
A new class of solution processable dendrimers based on cyclic phosphazene (CP) cores have been prepared and used as host materials for blue and green organic light emitting diodes (OLEDs). The dendrimers are prepared in high yield from minimal step reactions, are soluble in common solvents for solution processing, are amorphous, and have excellent thermal properties necessary for application in OLEDs. OLED efficiencies of 10.3 cd/A (4.2 lm/W) and 35.3 cd/A (33.5 lm/W) were achieved using commercially available FIrpic and Ir(mppy)3 as blue and green phosphorescent emitters, respectively. These efficiencies were 2× higher than control devices prepared using poly(N‐vinylcarbazole), the most commonly used host material in solution processed phosphorescent OLEDs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
To achieve high efficiencies in blue phosphorescent organic light‐emitting diodes (PhOLEDs), the triplet energies (T1) of host materials are generally supposed to be higher than the blue phosphors. A small organic molecule with low singlet energy (S1) of 2.80 eV and triplet energy of 2.71 eV can be used as the host material for the blue phosphor, [bis(4,6‐difluorophenylpyridinato‐N,C2′)iridium(III)] tetrakis(1‐pyrazolyl)borate (FIr6; T1=2.73 eV). In both the photo‐ and electro‐excited processes, the energy transfer from the host material to FIr6 was found to be efficient. In a three organic‐layer device, the maximum current efficiency of 37 cd A?1 and power efficiency of 40 Lm W?1 were achieved for the FIr6‐based blue PhOLEDs.  相似文献   

15.
According to the evidence from both theoretical calculations and experimental findings, conjugated ladder polymers containing large π‐conjugated structure, a high number of nitrogen heteroatoms, and a multiring aromatic system, could be an ideal organic anode candidate for lithium‐ion batteries (LIBs). In this report, we demonstrated that the nanostructured polyazaacene analogue poly(1,6‐dihydropyrazino[2,3g]quinoxaline‐2,3,8‐triyl‐7‐(2H)‐ylidene‐7,8‐dimethylidene) (PQL) shows high performance as anode materials in LIBs: high capacity (1750 mAh g?1, 0.05C), good rate performance (303 mAh g?1, 5C), and excellent cycle life (1000 cycles), especially at high temperature of 50 °C. Our results suggest nanostructured conjugated ladder polymers could be alternative electrode materials for the practical application of LIBs.  相似文献   

16.
A new kind of soluble structure‐ordered ladder‐like polysilsesquioxane with reactive side‐chain 2‐(4‐chloromethyl phenyl) ethyl groups ( L ) was first synthesized by stepwise coupling polymerization. The monomer, 2‐(4‐chloromethyl phenyl) ethyltrichlorosilane ( M ), was synthesized successfully by hydrosilylation reaction with dicyclopentadienylplatinum(II) chloride (Cp2PtCl2) ­catalyst. Monomer and polymer structures were characterized by FT‐IR, 1H‐NMR, 13C‐NMR, 29Si‐NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vapor pressure osmometry (VPO) and X‐ray diffraction (XRD). This novel reactive ladder‐like polymer has promise potential applications as initiator for atom transfer radical polymerization, and as precursor for a variety of advanced functional polymers. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
A series of neutral binuclear iridium and rhodium complexes were synthesized based on bis‐imine ligands under mild conditions. These half‐sandwich late transition metal complexes were isolated in good yields and characterized by elemental analysis, 1H NMR, 13C NMR, HR‐MS, and FT‐IR spectroscopies, and the solid state structure of complexes 1 and 2 were further confirmed by single‐crystal X‐ray diffraction. Cyclic voltammetry (CV) characterization indicated that the complex 1 has the best catalyst for water oxidation process with TOF of 0.8 s?1 at low overpotential of 0.325 V in methanol‐phosphate buffer. The proposed double‐site water oxidation mechanism had been also speculated .  相似文献   

18.
Triplet energy level-dependent decay pathways of excitons populated on iridium (Ir) complexes within π-conjugated polymeric matrices were studied by means of photoluminescence (PL) and photoconduction action spectroscopy. We chose a set of matrices, poly(9-vinylcarbazole) (PVK), poly[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl] (PF2/6), poly [2-(5′-cyano-5′-methyl-hexyloxy)-1,4-phenylene] (CNPPP), and poly [2-(5′-cyano-5′-methyl-hexyloxy)-1,4-phenylene-co-pridine] (CNPPP-py10 and CNPPP-Py20), having triplet energy levels ranging from 2.2 up to 3.0 eV. As Ir-complex dopants, we selected three phosphorescent emitters, iridium(III)bis(2-(2′-benzothienyl) pyridinato-N-acetylacetonate) (Ir(btp)2acac), iridium(III)fac-tris(2-phenylpyridine) (Ir(ppy)3), and iridium(III)bis[(4,6-fluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic), having triplet energy levels of 2.1, 2.5, and 2.7 eV, respectively. It was found that the triplet emission from the dopants, being populated via energy transfer from the matrices, was strongly dependent on the matching of triplet energy levels between matrix polymers and Ir-complexes. Photocurrent action spectra confirm effective exciton confinement at the dopants sites in the case of PVK matrix systems.  相似文献   

19.
In this study, we synthesized and characterized a series of spirobifluorene‐based bipolar compounds (D2 ACN, DNPACN, DNTACN, and DCzACN) in which a dicyano‐substituted biphenyl branch, linked orthogonally to a donor biphenyl branch bearing various diarylamines, acted as an acceptor unit allowing fine‐tuning of the morphological stability, triplet energy, bipolar transport behavior, and the HOMO and LUMO energy levels. The promising physical properties of these new compounds, together with their ability to transport electrons and holes with balanced mobilities, made them suitable for use as host materials in highly efficient phosphorescent organic light‐emitting diodes (PhOLEDs) with green iridium‐based‐ or red osmium‐based phosphors as the emitting layer (EML). We adopted a multilayer structure to efficiently confine holes and electrons within the EML, thus preventing exciton diffusion and improving device efficiency. The device incorporating D2 ACN doped with the red emitter [Os(bpftz)2(PPhMe2)2] (bpftz=3‐(trifluoromethyl)‐5‐(4‐tert‐butylpyridyl)‐1,2,4‐triazolate) gave a saturated red electrophosphorescence with CIE coordinates of (0.65, 0.35) and remarkably high efficiencies of 20.3 % (21 cd A?1) and 13.5 Lm W?1 at a practical brightness of 1000 cd m?2.  相似文献   

20.
We report the synthesis of a new class of thermally stable and strongly luminescent cyclometalated iridium(III) complexes 1 – 6 , which contain the 2‐acetylbenzo[b]thiophene‐3‐olate (bt) ligand, and their application in organic light‐emitting diodes (OLEDs). These heteroleptic iridium(III) complexes with bt as the ancillary ligand have a decomposition temperature that is 10–20 % higher and lower emission self‐quenching constants than those of their corresponding complexes with acetylacetonate (acac). The luminescent color of these iridium(III) complexes could be fine‐tuned from orange (e.g., 2‐phenyl‐6‐(trifluoromethyl)benzo[d]thiazole (cf3bta) for 4 ) to pure red (e.g., lpt (Hlpt=4‐methyl‐2‐(thiophen‐2‐yl)quinolone) for 6 ) by varying the cyclometalating ligands (C‐deprotonated C^N). In particular, highly efficient OLEDs based on 6 as dopant (emitter) and 1,3‐bis(carbazol‐9‐yl)benzene (mCP) as host that exhibit stable red emission over a wide range of brightness with CIE chromaticity coordinates of (0.67, 0.33) well matched to the National Television System Committee (NTSC) standard have been fabricated along with an external quantum efficiency (EQE) and current efficiency of 9 % and 10 cd A?1, respectively. A further 50 % increase in EQE (>13 %) by replacing mCP with bis[4‐(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)phenyl]diphenylsilane (BIQS) as host for 6 in the red OLED is demonstrated. The performance of OLEDs fabricated with 6 (i.e., [(lpt)2Ir(bt)]) was comparable to that of the analogous iridium(III) complex that bore acac (i.e., [(lpt)2Ir(acac)]; 6 a in this work) [Adv. Mater.­ 2011 , 23, 2981] fabricated under similar conditions. By using ntt (Hnnt=3‐hydroxynaphtho[2,3‐b]thiophen‐2‐yl)(thiophen‐2‐yl)methanone) ligand, a substituted derivative of bt, the [(cf3bta)2Ir(ntt)] was prepared and found to display deep red emission at around 700 nm with a quantum yield of 12 % in mCP thin film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号