首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of simple phenothiazine‐based dyes, namely, TP , EP , TTP , ETP , and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye‐sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc=15.2 mA cm?2, Voc=0.783 V, fill factor (FF)=0.679) and 7.87 % (Jsc=16.1 mA cm?2, Voc=0.717 V, FF=0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I?/I3? redox couple. By replacing the T group with the E unit, EP ‐based DSSCs had a slightly lower PCE of 7.98 % with a higher short‐circuit photocurrent (Jsc) of 16.7 mA cm?2. The dye ETP , with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP , with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.  相似文献   

2.
Four new type II organic dyes with D‐π‐A structure (donor‐π‐conjugated‐acceptor) and two typical type II sensitizers based on catechol as reference dyes are synthesized and applied in dye sensitized solar cells (DSCs). The four dyes can be adsorbed on TiO2 through hydroxyl group directly. Electron injection can occur not only through the anchoring group (hydroxyl group) but also through the electron‐withdrawing group (? CN) located close to the semiconductor surface. Experimental results show that the type II sensitizers with a D‐π‐A system obviously outperform the typical type II sensitizers providing much higher conversion efficiency due to the strong electronic push‐pull effect. Among these dyes, LS223 gives the best solar energy conversion efficiency of 3.6%, with Jsc=7.3 mA·cm?2, Voc=0.69 V, FF=0.71, the maximum IPCE value reaches 74.9%.  相似文献   

3.
A series of heteroleptic bis(tridentate) RuII complexes featuring N^C^N‐cyclometalating ligands is presented. The 1,2,3‐triazole‐containing tridentate ligands are readily functionalized with hydrophobic side chains by means of click chemistry and the corresponding cyclometalated RuII complexes are easily synthesized. The performance of these thiocyanate‐free complexes in a dye‐sensitized solar cell was tested and a power conversion efficiency (PCE) of up to 4.0 % (Jsc=8.1 mA cm?2, Voc=0.66 V, FF=0.70) was achieved, while the black dye ((NBu4)3[Ru(Htctpy)(NCS)3]; Htctpy=2,2′:6′,2′′‐terpyridine‐4′‐carboxylic acid‐4,4′′‐dicarboxylate) showed 5.2 % (Jsc=10.7 mA cm?2, Voc=0.69 V, FF=0.69) under comparable conditions. When co‐adsorbed with chenodeoxycholic acid, the PCE of the best cyclometalated dye could be improved to 4.5 % (Jsc=9.4 mA cm?2, Voc=0.65 V, FF=0.70). The PCEs correlate well with the light‐harvesting capabilities of the dyes, while a comparable incident photon‐to‐current efficiency was achieved with the cyclometalated dye and the black dye. Regeneration appeared to be efficient in the parent dye, despite the high energy of the highest occupied molecular orbital. The device performance was investigated in more detail by electrochemical impedance spectroscopy. Ultimately, a promising RuII sensitizer platform is presented that features a highly functionalizable “click”‐derived cyclometalating ligand.  相似文献   

4.
We have synthesized and characterized four organic dyes ( 9 , 10 , H1 , H2 ) based on a 3,6‐disubstituted carbazole donor as sensitizers in dye‐sensitized solar cells. These dyes have high molar extinction coefficients and energy levels suitable for electron transfer from an electrolyte to nanocrystalline TiO2 particles. Under standard air mass 1.5 global (AM 1.5 G) solar irradiation, a device using dye H4 exhibits a short‐circuit current density (Jsc) of 13.7 mA cm?2, an open‐circuit voltage (Voc) of 0.68 V, a fill factor (FF) of 0.70, and a calculated efficiency of 6.52 %. This performance is comparable to that of a reference cell based on N719 (7.30 %) under the same conditions. After 1000 hours of visible‐light soaking at 60 °C, the overall efficiency remained at 95 % of the initial value.  相似文献   

5.
Four organic D–A –π‐A‐featured sensitizers (TQ1, TQ2, IQ1, and IQ2) have been studied for high‐efficiency dye‐sensitized solar cells (DSSCs). We employed an indoline or a triphenylamine unit as the donor, cyanoacetic acid as the acceptor/anchor, and a thiophene moiety as the conjugation bridge. Additionally, an electron‐withdrawing quinoxaline unit was incorporated between the donor and the π‐conjugation unit. These sensitizers show an additional absorption band covering the broad visible range in solution. The contribution from the incorporated quinoxaline was investigated theoretically by using DFT and time‐dependent DFT. The incorporated low‐band‐gap quinoxaline unit as an auxiliary acceptor has several merits, such as decreasing the band gap, optimizing the energy levels, and realizing a facile structural modification on several positions in the quinoxaline unit. As demonstrated, the observed additional absorption band is favorable to the photon‐to‐electron conversion because it corresponds to the efficient electron transitions to the LUMO orbital. Electrochemical impedance spectroscopy (EIS) Bode plots reveal that the replacement of a methoxy group with an octyloxy group can increase the injection electron lifetime by a factor of 2.4. IQ2 and TQ2 can perform well without any co‐adsorbent, successfully suppress the charge recombination from TiO2 conduction band to I3? in the electrolyte, and enhance the electron lifetime, resulting in a decreased dark current and enhanced open circuit voltage (Voc) values. By using a liquid electrolyte, DSSCs based on dye IQ2 exhibited a broad incident photon‐to‐current conversion efficiency (IPCE) action spectrum and high efficiency (η=8.50 %) with a short circuit current density (Jsc) of 15.65 mA cm?2, a Voc value of 776 mV, a fill factor (FF) of 0.70 under AM 1.5 illumination (100 mW cm?2). Moreover, the overall efficiency remained at 97 % of the initial value after 1000 h of visible‐light soaking.  相似文献   

6.
Two novel main chain polymeric metal complexes containing 8‐hydroxyquinoline europium complexes and phenylethyl or fluorene units: 1,4‐Dioctyloxy‐2,5‐bis[2‐(8‐hydroxyquinoline)‐vinyl]‐benzene Eu(III) (3) and 2,7‐bis[2‐(8‐hydroxyquinoline)‐vinyl]‐9,9′‐diocthylfluorene Eu(III) (4) with donor–acceptor‐π‐conjugated structure (D‐π‐A) have been synthesized and investigated as dye sensitizers for dye‐sensitized solar cells dyes (DSSCs). They have been determined and studied by FT‐IR, TGA, DSC, GPC, Elemental analysis, UV–vis absorption spectroscopy, photoluminescence spectroscopy, cyclic voltammetry, and application in dye‐sensitized solar cells (DSSCs) as dye sensitizers. On the basis of optimized dye and molecular structure, they have shown solar‐to‐electricity conversion efficiency 2.25% for 3 (Jsc = 4.77 mA cm?2, Voc = 630 mV, FF = 0.75) and 3.04% for 4 (Jsc = 6.33 mA cm?2, Voc = 640 mV, FF = 0.75), under the illumination of AM1.5G, 100 mW/cm2. The IPCE of 3 and 4 are 30% and 46% at 400 nm, respectively. Besides, they showed good stabilities with thermal decomposition temperatures at 280 °C and 225 °C, respectively, which are suitable for DSSCs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1943–1951, 2010  相似文献   

7.
A series of organic dyes were prepared that displayed remarkable solar‐to‐energy conversion efficiencies in dye‐sensitized solar cells (DSSCs). These dyes are composed of a 4‐tert‐butylphenylamine donor group (D), a cyanoacrylic‐acid acceptor group (A), and a phenylene‐thiophene‐phenylene (PSP) spacer group, forming a D‐π‐A system. A dye containing a bulky tert‐butylphenylene‐substituted carbazole (CB) donor group showed the highest performance, with an overall conversion efficiency of 6.70 %. The performance of the device was correlated to the structural features of the donor groups; that is, the presence of a tert‐butyl group can not only enhance the electron‐donating ability of the donor, but can also suppress intermolecular aggregation. A typical device made with the CB‐PSP dye afforded a maximum photon‐to‐current conversion efficiency (IPCE) of 80 % in the region 400–480 nm, a short‐circuit photocurrent density Jsc=14.63 mA cm?2, an open‐circuit photovoltage Voc=0.685 V, and a fill factor FF=0.67. When chenodeoxycholic acid (CDCA) was used as a co‐absorbent, the open‐circuit voltage of CB‐PSP was elevated significantly, yet the overall performance decreased by 16–18 %. This result indicated that the presence of 4‐tert‐butylphenyl substituents can effectively inhibit self‐aggregation, even without CDCA.  相似文献   

8.
Seven SGT organics dyes, containing bis‐dimethylfluoreneyl amino groups with a dialkoxyphenyl unit as an electron donor and a cyanoacrylic acid group as an anchoring group, connected with oligothiophenes, fused thiophenes and benzothiadiazoles as π‐bridges, were designed and synthesised for applications in dye‐sensitised solar cells (DSSCs). The photovoltaic performance of DSSCs based on organic dyes with oligothiophenes depends on the molecular structure of the dyes, in terms of the length change of the π‐bridging units. The best performance was found with a π‐bridge length of about 6 Å. To further enhance the photovoltaic performance associated with this concept, cyclopenta[1,2‐b:5,4‐b′]dithiophene (CPDT) and benzothiadiazole were introduced into the π‐bridge unit. As a result, the DSSC based on the organic dye containing the CPDT moiety showed the best photovoltaic performance with a short‐circuit photocurrent density (Jsc) of 14.1 mA cm?2, an open‐circuit voltage (Voc) of 0.84 V and a fill factor (FF) of 0.72, corresponding to an overall conversion efficiency (η) of 8.61 % under standard AM 1.5 irradiation.  相似文献   

9.
Two novel side chain polymeric metal complexes (PFT‐Cd and PFT‐Zn) have been designed, synthesized, and characterized. These polymers were found to be good thermally stable and high glass transitions temperature, which indicate that these polymers could be applied as photovoltaic materials for dye‐sensitized solar cells (DSSCs). The obtained polymers exhibited good photovoltaic property. The DSSCs based on the PFT‐Cd and PFT‐Zn exhibited a maximum solar‐to‐electricity conversion efficiency (η) up to 3.37% (Jsc = 7.27 mA/cm2, Voc = 0.67 V, and FF = 0.69) and 3.01% (Voc = 0.72 V, Jsc = 6.10 mA/cm2, FF = 0.69) under simulated AM 1.5 G solar irradiation (90–95 mW/cm2). The result shows that these novel materials are suitable for the dye‐sensitized solar cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Three electron donor‐?? bridge‐electron acceptor (D‐π‐A) organic dyes bearing two carboxylic acid groups were applied to dye‐sensitized solar cells (DSSC) as sensitizers, in which one triphenylamine or modified triphenylamine and two rhodanine‐3‐acetic acid fragments act as D and A, respectively. It was found that the introduction of t‐butyl or methoxy group in the triphenylamine subunit could lead to more efficient photoinduced intramolecular charge transfer, thus improving the overall photoelectric conversion efficiency of the resultant DSSC. Under global AM 1.5 solar irradiation (73 mW·cm?2), the dye molecule based on methoxy‐substituted triphenylamine achieved the best photovoltaic performance: a short circuit photocurrent density (Jsc) of 12.63 mA·cm?2, an open circuit voltage (Voc) of 0.55 V, a fill factor (FF) of 0.62, corresponding to an overall efficiency (η) of 5.9%.  相似文献   

11.
We synthesized two new alternating polymers, namely P(Tt‐FQx) and P(Tt‐DFQx) , incorporating electron rich tri‐thiophene and electron deficient 6‐fluoroquinoxaline or 6,7‐difluoroquinoxaline derivatives. Both polymers P(Tt‐FQx) and P(Tt‐DFQx) exhibited high thermal stabilities and the estimated 5% weight loss temperatures are 425 and 460 °C, respectively. Polymers P(Tt‐FQx) and P(Tt‐DFQx) displayed intense absorption band between 450 and 700 nm with an optical band gap (Eg) of 1.78 and 1.80 eV, respectively. The determined highest occupied/lowest unoccupied molecular orbital's (HOMO/LUMO) of P(Tt‐DFQx) (?5.48 eV/?3.68 eV) are slightly deeper than those of P(Tt‐FQx) ( ?5.32 eV/?3.54 eV). The polymer solar cells fabricated with a device structure of ITO/PEDOT:PSS/ P(Tt‐FQx) or P(Tt‐DFQx) :PC70BM (1:1.5 wt %) + 3 vol % DIO/Al offered a maximum power conversion efficiency (PCE) of 3.65% with an open‐circuit voltage (Voc) of 0.59 V, a short‐circuit current (Jsc) of 10.65 mA/cm2 and fill factor (FF) of 59% for P(Tt‐FQx) ‐based device and a PCE of 4.36% with an Voc of 0.69 V, a Jsc of 9.92 mA/cm2, and FF of 63% for P(Tt‐DFQx) ‐based device. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 545–552  相似文献   

12.
Three organic dyes XS17 – 19 based on N,N‐dimethylaryl amine and rhodamine‐3‐acetic acid moieties are designed and synthesized. These dyes were applied into nanocrystalline TiO2 dye‐sensitized solar cells through standard operations, showing strong absorption bands at around 320–650 nm, and exhibiting broad IPCE responses. Cell based on XS17 gave a Jsc of 3.7 mA/cm2, an open circuit voltage of 550 mV, and a fill factor of 0.68, corresponding to an overall conversion efficiency of 1.4%. The low overall conversion efficiency is due to the modest IPCE and Voc values, which mainly stem from the acceptor of rhodanine‐3‐acetic acid.  相似文献   

13.
We have designed and synthesized highly efficient organic sensitizers with a planar thienothiophene–vinylene–thienothiophene linker. Under standard global AM 1.5 solar conditions, the JK‐113 ‐sensitized cell gave a short circuit photocurrent density (Jsc) of 17.61 mA cm?2, an open‐circuit voltage (Voc) of 0.71 V, and a fill factor (FF) of 72 %, corresponding to an overall conversion efficiency (η) of 9.1 %. The incident monochromatic photo‐to‐current conversion efficiency (IPCE) of JK‐113 exceeds 80 % over the spectral region from 400 to 640 nm, reaching its maximum of 93 % at 475 nm. The band tails off toward 770 nm, contributing to the broad spectral light harvesting. Solar‐cell devices based on the sensitizer JK‐113 in conjunction with a volatile electrolyte and a solvent‐free ionic liquid electrolyte gave high conversion efficiencies of 9.1 % and 7.9 %, respectively. The JK‐113 ‐based solar cell fabricated using a solvent‐free ionic liquid electrolyte showed excellent stability under light soaking at 60 °C for 1000 h.  相似文献   

14.
In dye‐sensitized solar cells (DSSCs), a significant dye‐regeneration force (ΔGreg0≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy‐conversion efficiency of state‐of‐art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close‐to‐zero driving force. By using Ru(dcbpy)(bpy)22+ as the dye and Ru(bpy)2(MeIm)23+//2+ as the redox couple, a short‐circuit current (Jsc) of 4 mA cm?2 and an open‐circuit voltage (Voc) of 0.9 V were obtained with a ΔGreg0 of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)21+/0Greg0=0.0 eV), which produced an Jsc of 2.5 mA cm?2 and Voc of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof‐of‐concept study demonstrates that high Voc values can be attained by significantly curtailing the dye‐regeneration force.  相似文献   

15.
A series of new push–pull organic dyes ( BT‐I – VI ), incorporating electron‐withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π spacer have been synthesized, characterized, and used as the sensitizers for dye‐sensitized solar cells (DSSCs). In comparison with the model compound T1 , these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π–π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51 %, in which BT‐I ‐based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon‐to‐current conversion efficiency (IPCE) of 81.1 %, a short‐circuit photocurrent density (Jsc) of 15.69 mA cm?2, an open‐circuit photovoltage (Voc) of 778 mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51 % under standard global AM 1.5 solar light conditions. Most importantly, long‐term stability of the BT‐I – III ‐based DSSCs with ionic‐liquid electrolytes under 1000 h of light soaking was demonstrated and BT‐II with a furan moiety exhibited better photovoltaic performance of up to 5.75 % power conversion efficiency.  相似文献   

16.
This one‐pot, four‐component coupling approach (Suzuki–Miyaura coupling/C?H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene‐based organic dyes for dye‐sensitized solar cells (DSSCs). Seven thiophene‐based, organic dyes of various donor structures with/without the use of a 3,4‐ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one‐pot, 3‐step, 35–61 %). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short‐circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open‐circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n‐hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2–5.6 %).  相似文献   

17.
Three novel triphenylamine-based D-A-π-A-featured dyes (Z1-Z3) have been designed, synthesized and characterized for use in dye-sensitized solar cells. Benzothiazole was incorporated as an additional acceptor, which greatly enhanced the molar extinction coefficient of the dyes. Various conjugated linkers, such as benzene, furan and thiophene, were also introduced to configure the novel D-A-π-A framework in order to prolong electron flow and active transportation. Among all dyes, Z2 containing a thiophene linker exhibited the maximum overall conversion efficiency (η) of 4.16% (Jsc = 9.27 mA cm-2 , Voc = 642 mV, FF = 0.70) under standard global AM 1.5 G solar condition.  相似文献   

18.
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs.  相似文献   

19.
Three new dyes with a 2‐(1,1‐dicyanomethylene)rhodanine (IDR‐ I , ‐ II , ‐ III ) electron acceptor as anchor were synthesized and applied to dye‐sensitized solar cells. We varied the bridging molecule to fine tune the electronic and optical properties of the dyes. It was demonstrated that incorporation of auxiliary acceptors effectively increased the molar extinction coefficient and extended the absorption spectra to the near‐infrared (NIR) region. Introduction of 2,1,3‐benzothiadiazole (BTD) improved the performance by nearly 50 %. The best performance of the dye‐sensitized solar cells (DSSCs) based on IDR‐ II reached 8.53 % (short‐circuit current density (Jsc)=16.73 mA cm?2, open‐circuit voltage (Voc)=0.71 V, fill factor (FF)=71.26 %) at AM 1.5 simulated sunlight. However, substitution of BTD with a group that featured the more strongly electron‐withdrawing thiadiazolo[3,4‐c]pyridine (PT) had a negative effect on the photovoltaic performance, in which IDR‐ III ‐based DSSCs showed the lowest efficiency of 4.02 %. We speculate that the stronger auxiliary acceptor acts as an electron trap, which might result in fast combination or hamper the electron transfer from donor to acceptor. This inference was confirmed by electrical impedance analysis and theoretical computations. Theoretical analysis indicates that the LUMO of IDR‐ III is mainly localized at the central acceptor group owing to its strong electron‐withdrawing character, which might in turn trap the electron or hamper the electron transfer from donor to acceptor, thereby finally decreasing the efficiency of electron injection into a TiO2 semiconductor. This result inspired us to select moderated auxiliary acceptors to improve the performance in our further study.  相似文献   

20.
Low‐cost transparent counter electrodes (CEs) for efficient dye‐sensitized solar cells (DSSCs) are prepared by using nanohybrids of carbon nanotube (CNT)‐supported platinum nanoparticles as highly active catalysts. The nanohybrids, synthesized by an ionic‐liquid‐assisted sonochemical method, are directly deposited on either rigid glass or flexible plastic substrates by a facile electrospray method for operation as CEs. Their electrochemical performances are examined by cyclic voltammetry, current density–voltage characteristics, and electrochemical impedance spectroscopy (EIS) measurements. The CNT/Pt hybrid films exhibit high electrocatalytic activity for I?/I3? with a weak dependence on film thickness. A transparent CNT/Pt hybrid CE film about 100 nm thick with a transparency of about 70 % (at 550 nm) can result in a high power conversion efficiency (η) of over 8.5 %, which is comparable to that of pyrolysis platinum‐based DSSCs, but lower cost. Furthermore, DSSC based on flexible CNT/Pt hybrid CE using indium‐doped tin oxide‐coated polyethylene terephthalate as the substrate also exhibits η=8.43 % with Jsc=16.85 mA cm?2, Voc=780 mV, and FF=0.64, and this shows great potential in developing highly efficient flexible DSSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号