首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An efficient rhodium(III)‐catalyzed synthesis of 2H‐chromene from N‐phenoxyacetamides and cyclopropenes has been developed. The reaction represents the first example of using cyclopropenes as a three‐carbon unit in rhodium(III)‐catalyzed C(sp2) H activations.  相似文献   

3.
[Cp*RhIII]‐catalyzed C H activation of arenes assisted by an oxidizing N O or N N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N O bonds in both C H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N O bond acts as both a directing group for C H activation and as an O‐atom donor.  相似文献   

4.
An efficient method for the one‐pot synthesis of substituted phenanthridinone derivatives from N‐methoxybenzamides and aryltriethoxysilanes through rhodium‐catalyzed dual C? H bond activation and annulation reactions is described. A double‐cycle mechanism is proposed to account for this catalytic reaction. In addition, isotope‐labeling studies were performed to understand the intimate mechanism of the reaction.  相似文献   

5.
6.
A coupling reaction of N‐phenoxyacetamides with N‐tosylhydrazones or diazoesters through RhIII‐catalyzed C H activation is reported. In this reaction, ortho‐alkenyl phenols were obtained in good yields and with excellent regio‐ and stereoselectivity. Rh–carbene migratory insertion is proposed as the key step in the reaction mechanism.  相似文献   

7.
8.
A new method for the synthesis of highly substituted naphthyridine‐based polyheteroaromatic compounds in high yields proceeds through rhodium(III)‐catalyzed multiple C H bond cleavage and C C and C N bond formation in a one‐pot process. Such highly substituted polyheteroaromatic compounds have attracted much attention because of their unique π‐conjugation, which make them suitable materials for organic semiconductors and luminescent materials. Furthermore, a possible mechanism, which involves multiple chelation‐assisted ortho C H activation, alkyne insertion, and reductive elimination, is proposed for this transformation.  相似文献   

9.
Directed Cp*RhIII‐catalyzed carbon–hydrogen (C H) bond functionalizations have evolved as a powerful strategy for the construction of heterocycles. Despite their high value, the development of related asymmetric reactions is largely lagging behind due to a limited availability of robust and tunable chiral cyclopentadienyl ligands. Rhodium complexes comprising a chiral Cp ligand with an atropchiral biaryl backbone enables an asymmetric synthesis of isoindolones from arylhydroxamates and weakly alkyl donor/acceptor diazo derivatives as one‐carbon component under mild conditions. The complex guides the substrates with a high double facial selectivity yielding the chiral isoindolones in good yields and excellent enantioselectivities.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Diaryliodonium salts play an increasingly important role as an aryl source. Reported is the first synthesis of diaryliodoniums by rhodium(III)‐catalyzed C H hyperiodination of electron‐poor arenes under chelation assistance. This C I coupling reaction occurred at room temperature with high regio‐selectivity and functional‐group compatibility. Subsequent diversified nucleophilic functionalization of a diaryliodonium allowed facile construction of C C, C N, C O, C S, C P and C Br bonds, and in all cases the initial functionalization occurred at the arene containing the chelating‐group.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号