首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upon slow crystallization from silica-containing solutions or gels at elevated pH, alkaline-earth carbonates spontaneously self-assemble into remarkable nanocrystalline ultrastructures. These so-called silica biomorphs exhibit curved morphologies beyond crystallographic symmetry and ordered textures reminiscent of the hierarchical design found in many biominerals. The formation of these fascinating materials is thought to be driven by a dynamic coupling of the components' speciations in solution, which causes concerted autocatalytic mineralization of silica-stabilized nanocrystals over hours. In the present work, we have studied the precipitation kinetics of this unique system by determining growth rates of individual aggregates using video microscopy, and correlated the results with time-dependent data on the concentration of metal ions and pH acquired online during crystallization. In this manner, insight to the evolution of chemical conditions during growth was gained. It is shown that crystallization proceeds linearly with time and is essentially reaction controlled, which fits well in the proposed morphogenetic scenario, and thus, indirectly supports it. Measurements of the silica concentration in solution, combined with analyses of crystal aggregates isolated at distinct stages of morphogenesis, further demonstrate that the fraction of silica coprecipitated with carbonate during active growth is rather small. We discuss our findings with respect to the role of silica in the formation of biomorphs, and moreover, prove that the external silica skins that occasionally sheath the aggregates--previously supposed to be involved in the growth mechanism--originate from secondary precipitation after growth is already terminated.  相似文献   

2.
Photochemical activation is proposed as a general method for controlling the crystallization of sparingly soluble carbonates in space and time. The photogeneration of carbonate in an alkaline environment is achieved upon photo-decarboxylation of an organic precursor by using a conventional 365 nm UV LED. Local irradiation was conducted focusing the LED light on a 300 μm radius spot on a closed glass crystallization cell. The precursor solution was optimized to avoid the precipitation of the photoreaction organic byproducts and prevent photo-induced pH changes to achieve the formation of calcium carbonate only in the corresponding irradiated area. The crystallization was monitored in real-time by time-lapse imaging. The method is also shown to work in gels. Similarly, it was also shown to photo-activate locally the formation of barium carbonate biomorphs. In the last case, the morphology of these biomimetic structures was tuned by changing the irradiation intensity.  相似文献   

3.
Understanding the crystallization of organic molecules is a long‐standing challenge. Herein, a mechanistic study on the self‐assembly of crystalline arrays in aqueous solution is presented. The crystalline arrays are assembled from perylene diimide (PDI) amphiphiles bearing a chiral N‐acetyltyrosine side group connected to the PDI aromatic core. A kinetic study of the crystallization process was performed using circular dichroism spectroscopy combined with time‐resolved cryogenic transmission electron microscopy (cryo‐TEM) imaging of key points along the reaction coordinate, and molecular dynamics simulation of the initial stages of the assembly. The study reveals a complex self‐assembly process starting from the formation of amorphous aggregates that are transformed into crystalline material through a nucleation–growth process. Activation parameters indicate the key role of desolvation along the assembly pathway. The insights from the kinetic study correlate well with the structural data from cryo‐TEM imaging. Overall, the study reveals four stages of crystalline self‐assembly: 1) collapse into amorphous aggregates; 2) nucleation as partial ordering; 3) crystal growth; and 4) fusion of smaller crystalline aggregates into large crystals. These studies indicate that the assembly process proceeds according to a two‐step crystallization model, whereby initially formed amorphous material is reorganized into an ordered system. This process follows Ostwald’s rule of stages, evolving through a series of intermediate phases prior to forming the final structure, thus providing an insight into the crystalline self‐assembly process in aqueous medium.  相似文献   

4.
We demonstrate that the biomimetic method—which has been used for the formation of silica thin films—also could be applied directly to the formation of titanium dioxide (TiO2) thin films, which are technologically important materials because of their applications to photocatalytic purifiers, photochemical solar cells, and others. After generation of poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) films on gold surfaces by surface‐initiated polymerization, titanium bis(ammonium lactato)dihydroxide was used as a precursor of TiO2. The TiO2/PDMAEMA films were successfully formed on the surfaces in aqueous solution at neutral pH (pH 6.7) and room temperature, and were characterized by X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy, and X‐ray diffractometry. The formed TiO2 films have an amorphous nature and large area uniformity in thickness. The degree of crystallization was controlled by annealing. We also investigated the pH effect and the phosphate incorporation in the films by using phosphate‐buffered solutions. The TiO2 films were formed in all the employed pH values in the range of 2 to 12, but phosphate anions were found to be incorporated into the films facilely only at low pH.  相似文献   

5.
Bioremediation of heavy metal ions by phosphate‐mineralization bacteria (PMB), as a new green and en‐ vironmental method, relies on microbe‐inducing phosphate precipitation and can prevent heavy metal ions from transferring. The growth of PMB was investigated via four aspects respectively — the control of incubation time, pH value, environmental conditions, and heavy metal ions. At the same time, phosphate? mineralization precipitations and mechanism of four common kinds of heavy metal ions were analyzed. The experimental results indicated that PMB didn’t grow immediately in the first 5 hours, and they reached to the fastest reproduction rate after 13 hours. The pH value of PMB solution increased gradually from 7.0 to 8.6 when PM0B grew, which plays an important role in the mineralization process. PMB could grow most rapidly at 30 °C, pH of 8 and low concentration of heavy metal ions. It showed that too high or too low temperature and pH, as well as high concentration of heavy metal ions, could inhibit the reproduction of PMB. Stable and large particles phosphate ‐ mineralization precipitation, whose particle size could be more than 10 microns, were obtained by the process that PMB induced substrate to decompose and thus mineralized heavy metal ions effectively.  相似文献   

6.
Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called “laser micro tsunami” makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy‐water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter‐sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser‐induced crystallization and crystal growth are summarized.  相似文献   

7.
Bovine submaxillary mucin (BSM) and chitosan were used to build layer-by-layer structures on solid substrates. The build-up was monitored using in situ ellipsometry to obtain time resolved values of the thickness and adsorbed amount. Additionally surface morphology during build-up was studied by atomic force microscopy (AFM). It was found that the adsorbed amount of the film increases approximately linearly with each deposition cycle on hydrophobized silica whereas construction on silica was found not to be possible at the experimental conditions used. We conclude that sufficient amount of the first mucin layer is crucial for the subsequent multilayer formation. The complex build-up kinetics on hydrophobized silica is characterized by adsorption and redissolution processes and the overall growth is the sum of both processes. AFM imaging on hydrophobized silica also confirmed the presence of redissolution processes and chitosan addition led to a reduction both in the number of surface aggregates and in the roughness of the surface. The present work also shows that by adjusting the relative concentrations of the polyelectrolytes it is possible to change the growth rate considerably. The final structures after deposition of 8 bilayers were found to have a high content of water and film stability test revealed that a substantial amount dissolves when increasing electrolyte concentration or pH of the ambient solution. Human mucin from saliva (MUC5B) was also used to create multilayers with chitosan on hydrophobized silica and it was revealed that no redissolution appears to be present in this system.  相似文献   

8.
The dynamics of the synthesis of a mesoporous silica material SBA-15 is followed using time-resolved in situ 1H NMR and transmission electron microscopy (TEM). Block copolymer-silica particles of two-dimensional hexagonal symmetry evolve from an initially micellar solution. The synthesis was carried out with the block copolymer Pluronic P123 (EO20-PO70-EO20) at 35 degrees C and using tetramethyl orthosilicate as the silica precursor. By using TEM, we can image different stages during the evolution of the synthesis. Flocs of spherical micelles held together by the polymerizing silica are observed prior to precipitation. With time, the structure of these flocs evolves and the transition from spherical to cylindrical hexagonally packed micelles can be monitored. The signal from the methyl protons of the PO part was recorded with 1H NMR. One observes a continuous increase in the signal width but with distinct changes in the spectral characteristics occurring in narrow time intervals. The spectral changes can be attributed to structural changes of the self-assembled aggregates. The 1H NMR and TEM studies reveal the same mechanism of formation. It is concluded that the aggregation is caused by a micelle-micelle attraction induced by oligomeric/polymeric silica that adsorbs to the EO palisade layer of the micelles and has the ability to bridge to another micelle. This adsorption also favors the formation of cylindrical aggregates relative to spherical micelles. The sequence of NMR and TEM observations can then be interpreted as the following sequence of events: (i) silicate adsorption on globular micelles possibly accompanied with some aggregate growth, (ii) the association of these globular micelles into flocs, (iii) the precipitation of these flocs, and (iv) micelle-micelle coalescence generating (semi)infinite cylinders that form the two-dimensional hexagonal packing.  相似文献   

9.
In biomineralization, living organisms carefully control the crystallization of calcium carbonate to create functional materials and thereby often take advantage of polymorphism by stabilizing a specific phase that is most suitable for a given demand. In particular, the lifetime of usually transient amorphous calcium carbonate (ACC) seems to be thoroughly regulated by the organic matrix, so as to use it either as an intermediate storage depot or directly as a structural element in a permanently stable state. In the present study, we show that the temporal stability of ACC can be influenced in a deliberate manner also in much simpler purely abiotic systems. To illustrate this, we have monitored the progress of calcium carbonate precipitation at high pH from solutions containing different amounts of sodium silicate. It was found that growing ACC particles provoke spontaneous polymerization of silica in their vicinity, which is proposed to result from a local decrease of pH nearby the surface. This leads to the deposition of hydrated amorphous silica layers on the ACC grains, which arrest growth and alter the size of the particles. Depending on the silica concentration, these skins have different thicknesses and exhibit distinct degrees of porosity, therefore impeding to varying extents the dissolution of ACC and energetically favored transformation to calcite. Under the given conditions, crystallization of calcium carbonate was slowed down over tunable periods or completely prevented on time scales of years, even when ACC coexisted side by side with calcite in solution.  相似文献   

10.
Herein, we report new insights into the nucleation and growth processes of chrysotile nanotubes by using batch and semi‐continuous experiments. For the synthesis of this highly carcinogenic material, the influences of temperature (90, 200, and 300 °C), Si/Mg molar ratio, and reaction time were investigated. From the semi‐continuous experiments (i.e., sampling of the reacting suspension over time) and solid‐state characterization of the collected samples by XRPD, TGA, FTIR spectroscopy, and FESEM, three main reaction steps were identified for chrysotile nucleation and growth at 300 °C: 1) formation of the proto‐serpentine precursor within the first 2 h of the reaction, accompanied by the formation of brucite and residual silica gel; 2) spontaneous nucleation and growth of chrysotile between about 3 and 8 h reaction time, through a progressive dissolution of the proto‐serpentine, brucite, and residual silica gel; and 3) Ostwald ripening growth of chrysotile from 8 to 30 h reaction time, as attested to by BET and FESEM measurements. Complementary results from batch experiments confirmed a significant influence of the reaction temperature on the kinetics of chrysotile formation. However, FESEM observations revealed some formation of chrysotile nanotubes at low temperatures (90 °C) after 14 days of reaction. Finally, doubling the Si/Mg molar ratio promoted the precipitation of pure smectite (stevensite‐type) under the same P (8.2 MPa)/T (300 °C)/pH (13.5) conditions.  相似文献   

11.
Preparation and Properties of Formed Aluminium Oxide. I. Influence of the Precipitation Conditions of the Boehmite Hydrogel on the Pore Structure of Formed Aluminium Oxide A report is given on the influence of the precipitation conditions of boehmite (pH value, temperature, concentration and residence time in the precipitation suspension) on the cavity structure of aluminium oxide spheres, made by coagulation of boehmite hydrosol in ammonia liquor and subsequent thermal treatment at 110 and 600°C. The boehmite hydrogel was obtained at continuous precipitation conditions by neutralisation of sodium aluminate solution with nitric acid. It is shown that the difference in the pore structure of the formed aluminium oxide obtained by varying the precipitation conditions were caused by the special morphological features of the boehmite crystallization in the precipitation process.  相似文献   

12.
An in situ study of the contact-free crystallization of calcium carbonate in acoustic levitated droplets is reported. The levitated droplet technique allows an in situ monitoring of the crystallization while avoiding any foreign phase boundaries that may influence the precipitation process by heterogeneous nucleation. The diffusion-controlled precipitation of CaCO3 at neutral pH starts in the initial step with the homogeneous formation of a stable, nanosized liquid-like amorphous calcium carbonate phase that undergoes in a subsequent step a solution-assisted transformation to calcite. Cryogenic scanning electron microscopy studies indicate that precipitation is not induced at the solution/air interface. Our findings demonstrate that a liquid-liquid phase separation occurs at the outset of the precipitation under diffusion-controlled conditions (typical for biomineral formation) with a slow increase of the supersaturation at neutral pH.  相似文献   

13.
The binding of a tetracationic porphyrin to a highly charged polymer like poly(sodium vinylsulfonate) has been investigated over a wide pH range and under various experimental conditions. We present evidence that, depending on the pH, the high electrostatic field exerted by the polymer stabilizes the diprotonated form of the free base porphyrin at unusual pH values or otherwise causes the formation of H‐type aggregates. In particular, at a low polymer concentration, lowering the pH at first allows the formation of the diacid species then it determines its reorganization in close‐packed J‐type aggregates. The employment of various metallo‐derivatives of the title porphyrin enables a better insight into the nature of all the detected species.  相似文献   

14.
The crystallization of CaCO3 was examined by changing the addition time of poly(acrylic acid) (PAA) to an aqueous solution of calcium carbonate by selectively interacting with the crystal at different stages during the crystal-forming process. The precipitation of CaCO3 was carried out by a double jet method to prevent heterogeneous nucleation on glass walls, and the sodium salt of PAA was added by a delayed addition method. In the initial presence of PAA in an aqueous solution of calcium carbonate, PAA acted as an inhibitor for the nucleation and growth of crystallization. However, it was found that stable vaterite particles were successfully obtained by delaying the addition of PAA from 1 to 60 min. The vaterite particles were stable in the aqueous solution for more than 30 days, and the CaCO3 particles were formed by a spherulitic growth mechanism. It is suggested that PAA strongly binds with the Ca2+ ion on the surface of CaCO3 particles to stabilize the unstable vaterite form effectively. Upon changing the addition time of PAA, we found that CaCO3 particles were formed through different formation mechanisms in selectively controlled crystallization at different stages during the crystallization process.  相似文献   

15.
At present, there is no direct experimental evidence that primary silica particles, which exist only transiently for a few seconds during the St?ber silica synthesis, can be stable in aqueous solutions. In the present work, we show that primary silica particles are formed spontaneously after the dissolution of diglycerylsilane (DGS) in aqueous solutions and remain stable for prolonged periods of time. By using time-resolved fluorescence anisotropy (TRFA), we demonstrate that this unique property of DGS is ascribed to the slow kinetics of silica particle growth in diluted sols at pH approximately 9.0. The anisotropy decay of the cationic dye rhodamine 6G (R6G), which strongly adsorbs to silica oligomers and nanoparticles in DGS sols, could be fit to three components: a fast (picosecond) scale component associated with free R6G, a slower (nanosecond) rotational component associated with R6G bound to primary silica particles, and a residual (nondecaying) anisotropy component associated with R6G that was bound to secondary or larger particles that were unable to rotate on the time scale of the R6G emission lifetime (4 ns). The data show that, under conditions where fast hydrolysis is obtained, the initial size of the nuclei depends on the silica concentration, with larger nuclei being present in more concentrated sols, while the rate of growth of primary particles depends on both silica concentration and solution pH. At low silica concentrations and high pHs, it was possible to observe the growth of stable, nonaggregating primary silica particles by a mechanism involving rapid nucleation followed by monomer addition. The presence of stable primary particles was confirmed by atomic force microscopy (AFM) imaging. At higher silica concentrations and lower pHs, there was an increase in the initial size of the nuclei formed, which subsequently grew to a larger radius (> 4.5 nm) or aggregated with time, and in such cases, nucleation and aggregation occurred simultaneously in the early stage of silica formation. The data clearly show the power of time-resolved fluorescence anisotropy decay measurements for probing the growth of silica colloids and show that this method is useful for elucidating the mechanism of particle formation and growth in situ.  相似文献   

16.
The biochemically important interconversion process between aldoses and ketoses is assumed to take place via 1,2‐enediol or 1,2‐enediolate intermediates, but such intermediates have never been isolated. The current work was undertaken in an attempt to detect the presence of the 1,2‐enediol structure of glycolaldehyde in alkaline medium, actually a 1,2‐enediolate, and to try to clarify the scarce data existing about both the formation of deprotonated enediol and the aldo‐enediolate equilibrium. The Raman spectra of neutral and basic solutions were recorded as a function of time for eleven days. Several bands associated with the presence of the enediolate were observed in alkaline medium. Glycolaldehyde exists as three different structures in aqueous solution at neutral pH, that is, hydrated aldehydes, aldehydes and dimers, with a respective ratio of approximately 4:0.25:1. Additionally, the formation of Z‐enediolate forms takes place at basic pH, together with an increase in the concentration of aldehyde species, such as 2‐oxoethan‐1‐olate, and a decrease in the concentrations of the hydrated aldehyde and dimeric forms. The theoretical ratio of ≈1.5:1 for aldehyde:Z‐enediolate reproduces the experimental Raman spectrum in basic medium, with an additional contribution of the previously mentioned ratio between the hydrated aldehyde and dimeric forms. Finally, Raman spectroscopy allowed us to monitor the enolization of this carbohydrate model and conclude that aldo‐enediol tautomerism—formally aldo‐enediolate—happens when a suitable amount of basic species is added.  相似文献   

17.
于泳  陈万春  康琦  刘道丹  戴国亮  崔海亮 《化学学报》2006,64(12):1284-1290
采用配液结晶法制取了溶菌酶蛋白质晶体, 使用动态光散射测量了溶液中聚集体的颗粒度几率分布; 使用Zeiss显微镜测定了溶菌酶(110)晶面的生长速度. 实验表明: 随着蛋白质和NaCl浓度的增加, 溶液中聚集体的颗粒尺寸也相应增加. 随着反应时间的增加, 溶菌酶分子在溶液中的聚集反应, 逐渐达到平衡; 在蛋白质和NaCl浓度较高时, 溶菌酶晶体的(110)面生长较快, 而在蛋白质和NaCl浓度较低时, 该晶面生长较慢. 基于二维成核生长机理, 从晶体生长动力学理论方程出发, 计算了二维成核的形成能α=4.01×10-8 J•cm-2.  相似文献   

18.
The effect of the conformational state of the polymer coil on the properties of protein–polymer conjugates has been studied for the conjugates of antibody (monoclonal antibody from 6C5 clone against inactivated rabbit muscle glyceraldehyde‐3‐phosphate dehydrogenase; Ab) with poly(methacrylic acid) (PMAA) or poly‐(acrylic acid) (PAA). The pH‐dependencies of molecular properties and structural parameters of aqueous solutions (radius of gyration, intensity of scattered light, hydrodynamic diameter, and polydispersity index) of Ab, PMAA, and PAA and their conjugates, i. e., Ab‐PMAA and Ab‐PAA, have been studied using static and dynamic light scattering techniques. While free Ab aggregates in solution and precipitates at its isoelectric point, the covalent attachment of a charged polymer to Ab prevents its association and shifts the precipitation point towards more acidic values (from pH 5.95 for Ab to pH ˜ 4.8 for Ab‐PMAA). The predominant role of the conformational status of the polymer in the process of conjugate precipitation has been considered. Contrary to the precipitation of Ab‐PMAA, the formation of stable colloidal particles was suggested for Ab‐PAA at pH < 4.8. In the conjugates, polymer chains surround the protein globule in an extremely compact manner while Ab significantly affects the polymer conformation. The essentially larger hydrodynamic radii of conjugates, when compared with their radii of gyration, confirm the strong interaction of conjugates with solvent molecules.  相似文献   

19.
We studied the influences of imidazolium‐based ionic liquids as additives in low ionic strength phosphate solution on releasing DNA from polyamidoamine dendrimer‐grafted silica nanoparticle surfaces. The effects of the side‐chain length of the imidazolium group, the anion and the concentration of the ionic liquid, the generation of the dendrimer, and the pH and the concentration of the release solution were investigated. It was found that addition of 4 mM 1‐hexyl‐3‐methylimidazolium bromide to 5 mM phosphate at pH 11 could markedly promote the desorption of DNA fragments, with a desorption efficiency of 99.0%. Compared with the conventional strategies employing high‐salt solutions or elevated temperature for acceptable recoveries, the method described here enabled quick release of DNA fragments that permitted direct, accurate analysis, and further treatment without desalting.  相似文献   

20.
Abstract

We suggest that the growth of molecular aggregates is the rate-controlling step in the crystallization of lysozyme from pH buffered aqueous solutions of strong electrolytes. We propose that the aggregation reaction passes through a charged transition state whose rate of formation is accelerated by Debye-Huckel screening and whose charge is stabilized by ion exchange with the solution. Applying the theory of the “primary kinetic salt effect”, we predict that the half-life for decay of the lysozyme concentration in solution in contact with a growing crystal should decrease linearly with the square root of the ionic strength. This prediction is confirmed experimentally in the case of lysozyme crystals precipitating at 4°C from pH buffered aqueous solutions of sodium chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号