首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of imidazoliophosphane with additional electron-withdrawing substituents, such as alkoxy or imidazolio groups, are experimentally described and theoretically studied. Diethyl N,N'-2,4,6-methyl(phenyl)imidazoliophosphonite is shown to retain a P-coordinating ability toward a {RhCl(cod)} (cod = cycloocta-1,5-diene) center, thus competing with the cleavage of the labile C-P bond. Derivatives of N,N'-phenylene-bridged diimidazolylphenylphosphane were isolated in good yield. Whereas the dicationic phosphane proved to be inert in the presence of [{RhCl(cod)}(2)], the monocationic counterpart was shown to retain the P-coordinating ability toward a {RhCl(cod)} center, thus competing with the N-coordinating ability of the nonmethylated imidazolyl substituent. The ethyl phosphinite version of the dication, thus possessing an extremely electron-poor P(III) center, was also characterized. According to the difference between the calculated homolytic and heterolytic dissociation energies, the N(2)C???P bond of imidazoliophosphanes with aryl, amino, or alkoxy substituents on the P atom is shown to be of dative nature. The P-coordinating properties of imidazoliophosphanes with various combinations of phenyl or ethoxy substituents on the P atom and those of six diimidazolophosphane derivatives with zero, one, or two methylium substituents on the N atom, were analyzed by comparison of the corresponding HOMOs and LUMOs and by calculation of the IR C=O stretching frequencies of their [RhCl(CO)(2)] complexes. Comparison of the ν(CO) values allows the family of the electron-poor Im(+) PRR' (Im = imidazolyl) potential ligands to be ranked in the following order versus (R,R'): P(OEt)(3)<(Ph,Ph)<(Ph,OEt)<(OEt,OEt)相似文献   

2.
Unusual chemical transformations such as three‐component combination and ring‐opening of N‐heterocycles or formation of a carbon–carbon double bond through multiple C–H activation were observed in the reactions of TpMe2‐supported yttrium alkyl complexes with aromatic N‐heterocycles. The scorpionate‐anchored yttrium dialkyl complex [TpMe2Y(CH2Ph)2(THF)] reacted with 1‐methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24‐membered rare‐earth metallomacrocyclic compound [TpMe2Y(μN,C‐Im)(η2N,C‐Im)]6 ( 1 ; Im=1‐methylimidazolyl) through two kinds of C–H activations at the C2‐ and C5‐positions of the imidazole ring. However, [TpMe2Y(CH2Ph)2(THF)] reacted with two equivalents of 1‐methylbenzimidazole to afford a C–C coupling/ring‐opening/C–C coupling product [TpMe2Y{η3‐(N,N,N)‐N(CH3)C6H4NHCH?C(Ph)CN(CH3)C6H4NH}] ( 2 ). Further investigations indicated that [TpMe2Y(CH2Ph)2(THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C–C coupling/ring‐opening product {(TpMe2)Y[μ‐η21‐SC6H4N(CH?CHPh)](THF)}2 ( 3 ). Moreover, the mixed TpMe2/Cp yttrium monoalkyl complex [(TpMe2)CpYCH2Ph(THF)] reacted with two equivalents of 1‐methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [TpMe2CpY(μ‐N,C‐Im)]3 ( 5 ), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [TpMe2Y(Im‐TpMe2)] ( 7 ; Im‐TpMe2=1‐methyl‐imidazolyl‐TpMe2) and [Cp3Y(HIm)] ( 8 ; HIm=1‐methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a C?C bond through multiple C–H activations.  相似文献   

3.
Multifaceted Coordination Chemistry of Vanadium(V): Substitution, Rearrangement Reactions, and Condensation Reactions of Oxovanadium(V) Complexes of the Tripodal Oxygen Ligand LOMe? = [η5‐(C5H5)Co{P(OMe)2(O)}3]? The octahedral oxovanadium(V) complex [V(O)F2LOMe] of the tripodal oxygen ligand LOMe? = [η5‐(C5H5)Co{P(OMe)2(O)}3]? reacts with alcohols and phenol with substitution of one fluoride ligand to form alkoxo complexes [V(O)F(OR)LOMe], R = Me, Et, i‐Prop, Ph. In the presence of water, however, both fluoride ions are substituted and a complex with the composition VO2LOMe can be isolated. The crystal structure shows that the oxo‐bridged trimer [{V(O)(LOMe)O}3] was synthesized. In the presence of BF3 the fluoride ligand in the alkoxo‐complex [V(O)F(OEt)LOMe] can be exchanged for pyridine to yield [V(O)(OEt)pyLOMe]BF4. Analogous attempts to exchange the fluoride ligand for tetrahydrofuran and acetonitrile induces a rearrangement reaction that leads to the vanadium complex [V(O)(LOMe)2]BF4. The crystal structure of this compound has been determined. Its 1H and 31P‐NMR spectra show that it is a highly fluxional vanadium complex at ambient temperature in solution. The two tripodal ligands LOMe? coordinate the vanadium centre as bidentate or tridentate ligands. The exchange bidentate/tridentate becomes slow on the NMR time scale below about 200 K.  相似文献   

4.
Intercluster compounds, [{(Au{P(pXPh)3})2(μ‐OH)}2][α‐SiMo12O40(Au{P(pXPh)3})2] · nEtOH [X = F ( 1 ), Cl ( 2 )] were synthesized by polyoxometalate (POM)‐mediated clusterization, and were unequivocally characterized by X‐ray crystallography, elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), Fourier transform infrared (FT‐IR), solid‐state cross‐polarization magic‐angle‐spinning (CPMAS) 31P nuclear magnetic resonance (NMR), and solution (1H, 31P{1H}) NMR spectroscopy. The “dimer‐of‐dinuclear phosphanegold(I) cation”, i.e., [{(Au{P(pXPh)3})2(μ‐OH)}2]2+ was formed by the self‐assembly of dinuclear phosphanegold(I) cations, i.e., [(Au{P(pXPh)3})2(μ‐OH)]+, through inter‐cationic aurophilic interactions as the crossed‐edge arrangement (or tetrahedral Au4 structure) for 1 , while as the parallel‐edge arrangement (or rectangular Au4 structure) for 2 . The latter arrangement was first attained only by assistance of the POM. The POM anions in 1 and 2 contained two mononuclear phosphanegold(I) cations, i.e., [Au{P(pXPh)3}]+, linked to the OMo2 oxygen atoms of edge‐sharing MoO6 octahedra. In the solution 31P{1H} NMR of 1 and 2 , we observed single signals due to the rapid exchange of the phosphanegold(I) units. This shows that the OMo2 oxygen atoms of edge‐sharing MoO6 octahedra in the Keggin POM act as multi‐centered active binding sites for the formation of [{(Au{P(pXPh)3})2(μ‐OH)}2]2+.  相似文献   

5.
The reaction of [Pt(CH2COMe)(Ph)(cod)] (cod=1,5‐cyclooctadiene) with (ArCH2NH2CH2‐C6H4COOH)+(PF6)? (Ar=4‐tBuC6H4 or 9‐anthryl) in the presence of cyclic oligoethers such as dibenzo[24]crown‐8 (DB24C8) and dicyclohexano[24]crown‐8 (DC24C8) produces {(ce)[ArCH2NH2CH2C6H4COOPt(Ph)(cod)]}+(PF6)? (ce=DB24C8 or DC24C8, Ar=4‐tBuC6H4 or 9‐anthryl) with interlocked structures. FABMS and NMR spectra of a solution of these compounds indicate that the Pt complexes with a secondary ammonium group and DB24C8 (or DC24C8) make up the axis and cyclic components, respectively. Temperature‐dependent 1H NMR spectra of a solution of {(DB24C8)[4‐tBuC6H4CH2NH2CH2‐C6H4COOPt(Ph)(cod)]}+(PF6)? ({(DB24C8)[ 4 ‐H]}+(PF6)?) show equilibration with free DB24C8 and the axis component. The addition of DB24C8 to a solution of {(DC24C8)[ 4 ‐H]}+(PF6)? causes partial exchange of the macrocyclic component of the interlocked molecules, giving a mixture of {(DC24C8)[ 4 ‐H]}+(PF6)?, {(DB24C8)[ 4 ‐H]}+(PF6)?, and free macrocyclic compounds. The reaction of 3,5‐Me2C6H3COCl with {(DB24C8)[ 4 ‐H]}+(PF6)? affords the organic rotaxane {(DB24C8)(4‐tBuC6H4CH2NH2CH2‐C6H4COOCOC6H3Me2‐3,5)}+(PF6)? through C? O bond formation between the aroyl group and the carboxylate ligand of the axis component. The addition of 2,2′‐bipyridine (bpy) to a solution of {(DB24C8)[ 4 ‐H]}+(PF6)? induces the degradation of the interlocked structure to form a complex with trigonal bipyramidal coordination, [Pt(Ph)(bpy)(cod)]+(PF6)?, whereas the reaction of bpy with [Pt(OCOC6H4Me‐4)(Ph)(cod)] produces the square‐planar complex [Pt(OCOC6H4Me‐4)(Ph)(bpy)].  相似文献   

6.
The synthesis and characterisation of a series of new Rh and Au complexes bearing 1,2,4‐triazol‐3‐ylidenes with a N‐2,4‐dinitrophenyl (N‐DNP) substituent are described. IR, NMR, single‐crystal X‐ray diffraction and computational analyses of the Rh complexes revealed that the N‐heterocyclic carbenes (NHCs) behaved as strong π acceptors and weak σ donors. In particular, a natural bond orbital (NBO) analysis revealed that the contributions of the Rh→Ccarbene π backbonding interaction energies (ΔEbb) to the bond dissociation energies (BDE) of the Rh? Ccarbene bond for [RhCl(NHC)(cod)] (cod=1,5‐cyclooctadiene) reached up to 63 %. The Au complex exhibited superior catalytic activity in the intermolecular hydroalkoxylation of cyclohexene with 2‐methoxyethanol. The NBO analysis suggested that the high catalytic activity of the AuI complex resulted from the enhanced π acidity of the Au atom.  相似文献   

7.
A series of seven novel NImNHP‐type pincer imidazolylphosphine ruthenium complexes has been synthesized and fully characterized. The use of hydrogenation of benzonitrile as a benchmark test identified [RuHCl(CO)(NImNHPtBu)] as the most active catalyst. With its stable Ru?BH4 analogue, in which chloride is replaced by BH4, a broad range of (hetero)aromatic and aliphatic nitriles, including industrially interesting adiponitrile, has been hydrogenated under mild and base‐free conditions.  相似文献   

8.
Readily accessible nitrilium triflates are convenient imine building blocks for the expedient synthesis of a novel class of 1,3‐P,N ligands as demonstrated for the reaction with primary phosphanes. This procedure allows variation of all substituents. X‐ray crystal structures are reported for nitrilium ions, phosphaamidines, and three phosphaamidinate complexes. The lithium phosphaamidinate is N coordinated and its reaction with [AuCl(tht)] (tht=tetrahydrothiophene) gives a unique P‐bridged gold trimer, while a P,N‐bidentate complex results from [{RhCl(cod)}2]. The nitrilium ion methodology allows extension of the 1,3‐P,N motive to bis(imino)phosphanes, which are the neutral phosphorus analogues of the valuable β‐diketiminate ligand.  相似文献   

9.
New monoanionic CNC pincer ligands, [N{SiMe2CH2(RIm)}2] (R = tBu, iPr, Ph) featuring three different N-heterocyclic carbenes and a disilylamido moiety is reported. Treatment of the lithium salt of [N{SiMe2CH2(RIm)}2] with CuIOTf afforded the corresponding copper complexes [N{SiMe2CH2(RIm)}2]Cu in 41–56 % yield. X-ray crystal structures of [N{SiMe2CH2(RIm)}2]Cu show that they are monomeric and feature three-coordinate, pseudo T-shaped copper(I) sites. The X-ray crystal structure of one of the precursor lithium complexes, [N{SiMe2CH2(tBuIm)}2]Li is also presented.  相似文献   

10.
An oxygen atom is selectively inserted into the P?B bond of a borylphosphine ( L1 ) by reaction with Me3NO to afford the corresponding borylphosphinite ( L2 ). This transformation can also be effected when L1 is coordinated to rhodium. The ν(CO) values for trans‐[RhCl(CO)(L)2] reveal very different electronic properties for coordinated L1 and L2 which translate into the strikingly different performances of the complexes [RhCl(L)(cod)] (L= L1 or L2 , cod=1,5‐cyclooctadiene) in hydrosilylation and hydroboration catalysis.  相似文献   

11.
Hexanuclear thiolato‐bridged arene ruthenium metalla‐prisms of the general formula [(p‐cymene)6Ru6(SR)6(tpt)2]6+ (R=CH2Ph, CH2C6H4ptBu, CH2CH2Ph; tpt=2,4,6‐tris(4‐pyridyl)‐1,3,5‐triazine), obtained from the dinuclear precursors [(p‐cymene)2Ru2(SR)2Cl2], AgCF3SO3 and tpt, have been isolated and fully characterised as triflate salts. The metalla‐prisms are highly cytotoxic against human ovarian cancer cells, especially towards the cisplatin‐resistant cell line A2780cisR (IC50 <0.25 μM ).  相似文献   

12.
Nickel Complexes of Mercaptoacetic Acid The reaction of [Cp°2Zr(OOCCH2SH‐κ1O)(OOCCH2SH‐κ2O, O′)] (Cp° = C5EtMe4) with [NiCl2(PMe2Ph)2] or [NiCl2(dppe)] (dppe = PPh2CH2CH2PPh2) in the presence of NEt3 yields the tetranuclear ZrIV/NiII complex [{Cp°2Zr(κ1O‐OOCCH2S‐κ2O′, S)(κ2O, O′‐OOCCH2S‐κ1S)Ni(PMe2Ph)}2] ( 1 ) and the chelate complexes [Ni(OOCCH2S‐κ2O, S)L2] [L = PMe2Ph ( 2 ), L2 = dppe ( 3 )]. 2 and 3 are also accessible from [NiCl2(PMe2Ph)2] or [NiCl2(dppe)] and mercaptoacetic acid in the presence of NEt3 in quantitative yield. The structure of 2 is dynamic in solution, whereby a complex with three‐coordinate nickel atom is formed. 2 and 3 were characterized spectroscopically (1H, 13C, 31P NMR and IR) and by crystal structure determination.  相似文献   

13.
Trialkynylphosphines substituted with bulky triarylsilyl groups at the alkyne termini were synthesized. The new phosphines P(C?CSiAr3)3 (Ar=3,5‐tBu2‐4‐MeOC6H2, 3,5‐(Me3Si)2C6H3) are uncrowded near the phosphorus atom but bulky in the distal region. As a result, they contain a large cavity, at the bottom of which the phosphine lone‐pair electrons are located. The compounds are stable to oxidation by air and hydrolysis. DFT calculations suggested that the triethynylphosphines are good π‐acceptor ligands, comparable with P(OAr)3. The trialkynylphosphines reacted with [{RhCl(cod)}2] (P/Rh=1.1:1) to give selectively the monophosphine–rhodium complex [RhCl(cod)P(C?CSiAr3)3]. X‐ray crystal‐structure analysis revealed that the {RhCl(cod)} fragment is fully accommodated by the cavity of the phosphine ligand. Compared to the effect of analogues with smaller end caps and PPh3, the trialkynylphosphines accelerated markedly the rhodium‐catalyzed hydrosilylation of ketones with a triorganosilane. It is proposed that the higher catalytic activity observed with the holey phosphines is a result of the preferential formation of a monophosphine–rhodium species.  相似文献   

14.
Syntheses of Oxovanadium(V) Halide Complexes Stabilized with Tripodal Oxygen Ligands LR = [η5‐(C5H5)Co{PR2(O)}3], R = OMe, OEt The sodium salts of the tripodal oxygen ligands LR = [η5‐(C5H5)Co{PR2(O)}3] (R = OMe, OEt) react with the oxovanadium halides V(O)F3 and V(O)Cl3 to yield deep red compounds of the type [V(O)X2LR]. Halide exchange reactions with [V(O)Cl2LOMe] und [V(O)F2LOMe] aiming at the preparation of the analogous bromide complex [V(O)Br2LOMe] led to the isomer [VO(LOMe)2][V(O)Br4]. The crystal structure of [V(O)Cl2LOMe] has been determined by single crystal x‐ray diffraction. The compound crystallizes in the monoclinic space group P21/n with a = 9.6332(8), b = 15.0312(11) and c = 15.3742(12)Å, β = 100.181(8)°. The coordination around vanadium is distorted octahedral.  相似文献   

15.
The reaction of 1,3‐diisopropylimidazolin‐2‐ylidene (iPr2Im) with diphenyldichlorosilane (Ph2SiCl2) leads to the adduct (iPr2Im)SiCl2Ph2 1 . Prolonged heating of isolated 1 at 66 °C in THF affords the backbone‐tethered bis(imidazolium) salt [(aHiPr2Im)2SiPh2]2+ 2 Cl? 2 (“a” denotes “abnormal” coordination of the NHC), which can be synthesized in high yields in one step starting from two equivalents of iPr2Im and Ph2SiCl2. Imidazolium salt 2 can be deprotonated in THF at room temperature using sodium hydride as a base and catalytic amounts of sodium tert‐butoxide to give the stable N‐heterocyclic dicarbene (aiPr2Im)2SiPh2 3 , in which two NHCs are backbone‐tethered with a SiPh2 group. This easy‐to‐synthesize dicarbene 3 can be used as a novel ligand type in transition metal chemistry for the preparation of dinuclear NHC complexes, as exemplified by the synthesis of the homodinuclear copper(I) complex [{a(ClCu?iPr2Im)}2SiPh2] 4 .  相似文献   

16.
The reaction of [{Ir(cod)(μ‐Cl)}2] and K2CO3 or of [{Ir(cod)(μ‐OMe)}2] alone with the non‐natural tetrapyrrole 2,2′‐bidipyrrin (H2BDP) yields, depending on the stoichiometry, the mononuclear complex [Ir(cod)(HBDP)] or the homodinuclear complex [{Ir(cod)}2(BDP)]. Both complexes react readily with carbon monoxide to yield the species [Ir(CO)2(HBDP)] and [{Ir(CO)2}2(BDP)], respectively. The results from NMR spectroscopy and X‐ray diffraction reveal different conformations for the tetrapyrrolic ligand in both complexes. The reaction of [{Ir(coe)2(μ‐Cl)}2] with H2BDP proceeds differently and yields the macrocyclic [4e?,2H+]‐oxidized product [IrCl2(9‐Meic)] (9‐Meic = monoanion of 9‐methyl‐9,10‐isocorrole), which can be addressed as an iridium analog of cobalamin.  相似文献   

17.
The preparation of a series of complexes of the types [RhCl(CO)2(L)], [RhCl(cod)(L)] and [Rh(cod)(L)2]ClO4, where L is a ligand incorporating a ferrocenyl group and a pyridine ring is described. Complexes were characterized using NMR, IR and electronic spectroscopy. The electrochemical behaviour of the complexes was examined using cyclic voltammetry. The X-ray structures of three of the complexes, [RhCl(CO)2{NC5H4CNC6H45-C5H4)Fe(η5-C5H5)}], [RhCl(cod)(3-Fcpy)] and [RhCl(cod){3-Fc(C6H4)py}], were determined.  相似文献   

18.
Treatment of titanyl sulfate in about 60 mM sulfuric acid with NaLOEt (LOEt?=[(η5‐C5H5)Co{P(O)(OEt)2}3]?) afforded the μ‐sulfato complex [(LOEtTi)2(μ‐O)2(μ‐SO4)] ( 2 ). In more concentrated sulfuric acid (>1 M ), the same reaction yielded the di‐μ‐sulfato complex [(LOEtTi)2(μ‐O)(μ‐SO4)2] ( 3 ). Reaction of 2 with HOTf (OTf=triflate, CF3SO3) gave the tris(triflato) complex [LOEtTi(OTf)3] ( 4 ), whereas treatment of 2 with Ag(OTf) in CH2Cl2 afforded the sulfato‐capped trinuclear complex [{(LOEt)3Ti3(μ‐O)3}(μ3‐SO4){Ag(OTf)}][OTf] ( 5 ), in which the Ag(OTf) moiety binds to a μ‐oxo group in the Ti3(μ‐O)3 core. Reaction of 2 in H2O with Ba(NO3)2 afforded the tetranuclear complex (LOEt)4Ti4(μ‐O)6 ( 6 ). Treatment of 2 with [{Rh(cod)Cl}2] (cod=1,5‐cyclooctadiene), [Re(CO)5Cl], and [Ru(tBu2bpy)(PPh3)2Cl2] (tBu2bpy=4,4′‐di‐tert‐butyl‐2,2′‐dipyridyl) in the presence of Ag(OTf) afforded the heterometallic complexes [(LOEt)2Ti2(O)2(SO4){Rh(cod)}2][OTf]2 ( 7 ), [(LOEt)2Ti(O)2(SO4){Re(CO)3}][OTf] ( 8 ), and [{(LOEt)2Ti2(μ‐O)}(μ3‐SO4)(μ‐O)2{Ru(PPh3)(tBu2bpy)}][OTf]2 ( 9 ), respectively. Complex 9 is paramagnetic with a measured magnetic moment of about 2.4 μB. Treatment of zirconyl nitrate with NaLOEt in 3.5 M sulfuric acid afforded [(LOEt)2Zr(NO3)][LOEtZr(SO4)(NO3)] ( 10 ). Reaction of ZrCl4 in 1.8 M sulfuric acid with NaLOEt in the presence Na2SO4 gave the μ‐sulfato‐bridged complex [LOEtZr(SO4)(H2O)]2(μ‐SO4) ( 11 ). Treatment of 11 with triflic acid afforded [(LOEt)2Zr][OTf]2 ( 12 ), whereas reaction of 11 with Ag(OTf) afforded a mixture of 12 and trinuclear [{LOEtZr(SO4)(H2O)}33‐SO4)][OTf] ( 13 ). The ZrIV triflato complex [LOEtZr(OTf)3] ( 14 ) was prepared by reaction of LOEtZrF3 with Me3SiOTf. Complexes 4 and 14 can catalyze the Diels–Alder reaction of 1,3‐cyclohexadiene with acrolein in good selectivity. Complexes 2 – 5 , 9 – 11 , and 13 have been characterized by X‐ray crystallography.  相似文献   

19.
Tetrameric [{RZn(NHNMe2)}4] (R = Me, Et), the first organometallic zinc hydrazides to be described, have been prepared by alkane elimination from dialkylzinc solutions and N,N‐dimethylhydrazine. They were characterised by 1H and 13C NMR and IR spectroscopy, mass spectrometry, elemental analysis and X‐ray crystallography. The compounds form asymmetric aggregates containing the novel Zn4N8 core; tetrahedra of Zn atoms bear the alkyl groups at Zn, with the triangular faces bridged by NHNMe2 substituents. The NH groups are connected to two Zn atoms, and the NMe2 groups to one. Hydrolysis of the compounds with water gives [(RZn)4(OH)(NHNMe2)3] as products, which also were characterised as described above. Higher yields of these hydroxo clusters were achieved in one‐pot syntheses by reaction of dialkylzinc solutions with mixtures of N,N‐dimethylhydrazine and water. They contain Zn4N6O cages, in which one hydroxide in the tetrameric hydrazides described above replaces one NHNMe2 group. Similar products can be prepared with alkoxy instead of hydroxy groups, in analogous one‐pot syntheses with alcohols. Alcoholysis of [EtZn(NHNMe2)]4 with methanol or ethanol gave zinc trishydrazide monoalkoxides, [(EtZn)4(OR)(NHNMe2)3] (R = Me, Et), which have constitutions analogous to the monohydroxides. The organozinc bishydrazide bisalkoxides [(MeZn)4(NHNMe2)2(OEt)2] and [(EtZn)4(NHNMe2)2(OEt)2] were obtained in one‐pot reactions from dialkylzinc solutions with mixtures of the hydrazine and alcohol, and their crystal structures, confirmed by spectroscopic methods in solution, show an unsymmetrical aggregation with the novel Zn4N4O2 cage structure.  相似文献   

20.
An examination of the [{Pd(cinnamyl)Cl}2]/Mor‐DalPhos (Mor‐DalPhos=di(1‐adamantyl)‐2‐morpholinophenylphosphine) catalyst system in Buchwald–Hartwig aminations employing ammonia was conducted to better understand the catalyst formation process and to guide the development of precatalysts for otherwise challenging room‐temperature ammonia monoarylations. The combination of [{Pd(cinnamyl)Cl}2] and Mor‐DalPhos afforded [(κ2P,N‐Mor‐DalPhos)Pd(η1‐cinnamyl)Cl] ( 2 ), which, in the presence of a base and chlorobenzene, generated [(κ2P,N‐Mor‐DalPhos)Pd(Ph)Cl] ( 1 a ). Halide abstraction from 1 a afforded [(κ3P,N,O‐Mor‐DalPhos)Pd(Ph)]OTf ( 5 ), bringing to light a potential stabilizing interaction that is offered by Mor‐DalPhos. An examination of [(κ2P,N‐Mor‐DalPhos)Pd(aryl)Cl] ( 1 b – f ) and related precatalysts for the coupling of ammonia and chlorobenzene at room temperature established the suitability of 1 a in such challenging applications. The scope of reactivity for the use of 1 a (5 mol %) encompassed a range of (hetero)aryl (pseudo)halides (X=Cl, Br, I, OTs) with diverse substituents (alkyl, aryl, ether, thioether, ketone, amine, fluoro, trifluoromethyl, and nitrile), including chemoselective arylations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号