首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A pair of diastereomeric dinuclear complexes, [Tp′(CO)BrW{μ-η2-C,C′2-S,P-C2(PPh2)S}Ru(η5-C5H5)(PPh3)], in which W and Ru are bridged by a phosphinyl(thiolato)alkyne in a side-on carbon P,S-chelate coordination mode, were synthesized, separated and fully characterized. Even though the isomers are similar in their spectroscopic properties and redox potentials, the like-isomer is oxidized at W while the unlike-isomer is oxidized at Ru, which is proven by IR, NIR and EPR-spectroscopy supported by spectro-electrochemistry and computational methods. The second oxidation of the complexes was shown to take place at the metal left unaffected in the first redox step. Finally, the tipping point could be realized in the unlike isomer of the electronically tuned thiophenolate congener [Tp′(CO)(PhS)W{μ-η2-C,C′2-S,P-C2(PPh2)S}Ru(η5-C5H5)-(PPh3)], in which valence trapped WIII/RuII and WII/RuIII cationic species are at equilibrium.  相似文献   

2.
Transition‐metal carbene complexes have been known for about 50 years and widely applied as reagents and catalysts in organic transformations. In contrast, the carbene chemistry of the rare‐earth metals is much less developed, but has attracted the research interest in the recent years. In this field rare‐earth‐metal alkylidene, especially methylidene, compounds are an emerging class of compounds with a high synthetic potential for organometallic chemistry and maybe in the future also for organic chemistry.  相似文献   

3.
4.
The tripyrrin‐1,14‐dione scaffold of urinary pigment uroerythrin coordinates divalent palladium as a planar tridentate ligand. Spectroscopic, structural and computational investigations reveal that the tripyrrindione ligand binds as a dianionic radical, and the resulting complex is stable at room temperature. One‐electron oxidation and reduction reactions do not alter the planar coordination sphere of palladium(II) and lead to the isolation of two additional complexes presenting different redox states of the ligand framework. Unaffected by stability problems common to tripyrrolic fragments, the tripyrrindione ligand offers a robust platform for ligand‐based redox chemistry.  相似文献   

5.
The treatment of the recently reported potassium salt (S)‐N,N′‐bis‐(1‐phenylethyl)benzamidinate ((S)‐KPEBA) and its racemic isomer (rac‐KPEBA) with anhydrous lanthanide trichlorides (Ln=Sm, Er, Yb, Lu) afforded mostly chiral complexes. The tris(amidinate) complex [{(S)‐PEBA}3Sm], bis(amidinate) complexes [{Ln(PEBA)2(μ‐Cl)}2] (Ln=Sm, Er, Yb, Lu), and mono(amidinate) compounds [Ln(PEBA)(Cl)2(thf)n] (Ln=Sm, Yb, Lu) were isolated and structurally characterized. As a result of steric effects, the homoleptic 3:1 complexes of the smaller lanthanide atoms Yb and Lu were not accessible. Furthermore, chiral bis(amidinate)–amido complexes [{(S)‐PEBA}2Ln{N(SiMe3)2}] (Ln=Y, Lu) were synthesized by an amine‐elimination reaction and salt metathesis. All of these chiral bis‐ and tris(amidinate) complexes had additional axial chirality and they all crystallized as diastereomerically pure compounds. By using rac‐PEBA as a ligand, an achiral meso arrangement of the ligands was observed. The catalytic activities and enantioselectivities of [{(S)‐PEBA}2Ln{N(SiMe3)2}] (Ln=Y, Lu) were investigated in hydroamination/cyclization reactions. A clear dependence of the rate of reaction and enantioselectivity on the ionic radius was observed, which showed higher reaction rates but poorer enantioselectivities for the yttrium compound.  相似文献   

6.
Molecular hydrides of the rare‐earth metals play an important role as homogeneous catalysts and as counterparts of solid‐state interstitial hydrides. Structurally well‐characterized non‐metallocene‐type hydride complexes allow the study of elementary reactions that occur at rare‐earth‐metal centers and of catalytic reactions involving bonds between rare‐earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available.  相似文献   

7.
Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare‐earth‐metal nitridophosphate LiNdP4N8 is reported. High‐pressure solid‐state metathesis between LiPN2 and NdF3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single‐crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd3+ ions were measured by SQUID magnetometry. LiNdP4N8 serves as a model system for the exploration of rare‐earth‐metal nitridophosphates that may even be expanded to transition metals. High‐pressure metathesis enables the systematic study of these uncharted regions of nitride‐based materials with unprecedented properties.  相似文献   

8.
A new class of rare‐earth‐metal alkynyl complexes has been prepared. The reactions of the tris(tetramethylaluminate)s of lanthanum, praseodymium, samarium, yttrium, holmium, and thulium, [Ln(AlMe4)3], with phenylacetylene afforded compounds [Ln{(μ‐C?CPh)2AlMe2}3] (Ln=La ( 1 ), Pr ( 2 ), Sm ( 3 ), Y ( 4 ), Ho ( 5 ), Tm ( 6 )). All of these compounds have been characterized by NMR spectroscopy, X‐ray crystallography, and by elemental analysis. NMR spectroscopic studies of the series of para‐ magnetic compounds [Ln(AlMe4)3] and [Ln{(μ‐C?CPh)2AlMe2}3] have also been performed.  相似文献   

9.
10.
11.
12.
Six new rare‐earth metal tetracyanidoborates were prepared and characterized by single‐crystal X‐ray diffraction. Crystals of these salts contain co‐crystallized solvent molecules, such as water, acetone, ethanol, or diethyl ether. In [La(EtOH)3(H2O)2{B(CN)4}3] ( 1 ), [La(EtOH)(H2O)4{B(CN)4}3] · Et2O ( 2 ), and [Y(EtOH)(H2O)4{B(CN)4}3] · EtOH ( 6 ) the tetracyanidoborate anions are all or in part bonded to the RE3+ ions, whereas in [Pr(H2O)9][B(CN)4]3 · (CH3)2CO ( 3 ), [Er(H2O)8][B(CN)4]3 · (CH3)2CO ( 4 ), and [Lu(EtOH)(H2O)7][B(CN)4]3 · EtOH · 0.5H2O ( 5 ) the [B(CN)4] anions are not coordinated to the central metal atoms. Only in 1 , one of the three crystallographically independent [B(CN)4] anions acts as a bridging ligand.  相似文献   

13.
The synthesis, structural, and spectral characterization as well as a theoretical study of a family of alkaline‐earth‐metal acetylides provides insights into synthetic access and the structural and bonding characteristics of this group of highly reactive compounds. Based on our earlier communication that reported unusual geometry for a family of triphenylsilyl‐substituted alkaline‐earth‐metal acetylides, we herein present our studies on an expanded family of target derivatives, providing experimental and theoretical data to offer new insights into the intensively debated theme of structural chemistry in heavy alkaline‐earth‐metal chemistry.  相似文献   

14.
The development of rhenium(I) chemistry has been restricted by the limited structural and electronic variability of the common pseudo‐octahedral products fac‐[ReX(CO)3L2] (L2=α‐diimine). We address this constraint by first preparing the bidentate bis(imino)pyridine complexes [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)3X] (X=Cl 2 , Br 3 ), which were characterized by spectroscopic and X‐ray crystallographic means, and then converting these species into tridentate pincer ligand compounds, [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)2X] (X=Cl 4 , Br 5 ). This transformation was performed in the solid‐state by controlled heating of 2 or 3 above 200 °C in a tube furnace under a flow of nitrogen gas, giving excellent yields (≥95 %). Compounds 4 and 5 define a new coordination environment for rhenium(I) carbonyl chemistry where the metal center is supported by a planar, tridentate pincer‐coordinated bis(imino)pyridine ligand. The basic photophysical features of these compounds show significant elaboration in both number and intensity of the d–π* transitions observed in the UV/Vis spec tra relative to the bidentate starting materials, and these spectra were analyzed using time‐dependent DFT computations. The redox nature of the bis(imino)pyridine ligand in compounds 2 and 4 was examined by electrochemical analysis, which showed two ligand reduction events and demonstrated that the ligand reduction shifts to a more positive potential when going from bidentate 2 to tridentate 4 (+160 mV for the first reduction step and +90 mV for the second). These observations indicate an increase in electrostatic stabilization of the reduced ligand in the tridentate conformation. Elaboration on this synthetic methodology documented its generality through the preparation of the pseudo‐octahedral rhenium(I) triflate complex [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)2OTf] ( 7 , 93 % yield).  相似文献   

15.
Upconversion emissions from rare‐earth nanoparticles have attracted much interest as potential biolabels, for which small particle size and high emission intensity are both desired. Herein we report a facile way to achieve NaYF4:Yb,Er@CaF2 nanoparticles (NPs) with a small size (10–13 nm) and highly enhanced (ca. 300 times) upconversion emission compared with the pristine NPs. The CaF2 shell protects the rare‐earth ions from leaking, when the nanoparticles are exposed to buffer solution, and ensures biological safety for the potential bioprobe applications. With the upconversion emission from NaYF4:Yb,Er@CaF2 NPs, HeLa cells were imaged with low background interference.  相似文献   

16.
Hydrosilylation of alkynes generally yield vinylsilanes, which are inert to the further hydrosilylation because of the steric effects. Reported here is the first successful dihydrosilylation of aryl‐ and silyl‐substituted internal alkynes enabled by a rare‐earth ate complex to yield geminal bis‐ and tris(silanes), respectively. The lanthanum bis(amido) ate complex supported by an ene‐diamido ligand proved to be the ideal catalyst for this unprecedented transformation, while the same series of yttrium and samarium alkyl and samarium bis(amido) ate complexes exhibited poor activity and selectivity, indicating significant effects of the ionic size and ate structure of the rare‐earth catalysts.  相似文献   

17.
18.
Coordination of the novel redox‐active phosphine‐appended aminophenol pincer ligand (PNOH2) to PdII generates a paramagnetic complex with a persistent ligand‐centered radical. The complex undergoes fully reversible single‐electron oxidation and reduction. Homolytic bond activation of diphenyldisulfide by the single‐electron reduced species leads to a ligand‐based mixed‐valent dinuclear palladium complex with a single bridging thiolate ligand. Mechanistic investigations support an unprecedented intramolecular ligand‐to‐disulfide single‐electron transfer process to induce homolytic S? S cleavage, thereby releasing a thiyl (sulfanyl) radical. This could be a new strategy for small‐molecule bond activation.  相似文献   

19.
Tetranuclear, intensely blue‐coloured CuI complexes were synthesised in which two Cu2X3? units (X=Br or I) are bridged by a dicationic GFA (guanidino‐functionalised aromatic) ligand. The UV/Vis spectra show a large metal‐to‐ligand charge‐transfer (MLCT) band around 638 nm. The tetranuclear “low‐temperature” complexes are in a temperature‐dependent equilibrium with dinuclear CuI “high‐temperature” complexes, which result from the reversible elimination of two CuX groups. A massive thermochromism effect results from the extinction of the strong MLCT band upon CuX elimination with increasing temperature. For all complexes, quantum chemical calculations predict a small and method‐dependent energy difference between the possible electronic structures, namely CuI and dicationic GFA ligand (closed‐shell singlet) versus CuII and neutral GFA ligand (triplet or broken‐symmetry state). The closed‐shell singlet state is disfavoured by hybrid‐DFT functionals, which mix in exact Hartree–Fock exchange, and is favoured by larger basis sets and consideration of a polar medium.  相似文献   

20.
The reaction of (NO2)(CF3SO3) and elemental palladium in oleum (65 % SO3) leads to violet single crystals of Pd(HS2O7)2 (monoclinic, P21/c, Z=2, a=927.80(9), b=682.58(7), c=920.84(9) pm, β=117.756(2)°, wR2=0.0439). In the crystal structure, the Pd2+ ions show an uncommon octahedral coordination of six oxygen atoms belonging to six HS2O7? ions. The linkage of [PdO6] octahedra and the hydrogendisulfate anions leads to a layer structure, and the layers are held together by hydrogen bonds. The unusual coordination of the Pd2+ ions results in an electronic d8 high‐spin configuration, which leads to the paramagnetic behavior of the compound. Moreover, at low temperature, a ferromagnetic ordering was observed with a Curie temperature of 8 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号