首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luminescent cyclometalated iridium complexes based on pyridyl appended dipyrrin ligands were prepared and characterized both in the solid state and in solution. The functionalization of the peripheral pyridyl moiety causes dramatic changes on the emission properties of both mono- and hetero- binuclear complexes. A detailed photophysical investigation of the two mononuclear derivatives of the [(Ppy)(2)Ir(dpm-py)] family (Ppy=2-phenylpyridine, dpm-py=5-(4-pyridyl)dipyrrin) was carried out. Introduction of methyl groups at the 3 and 5?positions on the pyridyl unit diminishes the non-radiative rate constant by locking the peripheral pyridyl group orthogonally to the dipyrrinato plane. Thus, they limit the rotational degree of freedom, as well as the charge-transfer character of the excited state. The coordination of these two complexes to a cyclometalated [(dppy)Pt] fragment (dppy=2,6-diphenylpyridine) led to the formation of binuclear species in which the iridium and platinum complexes behave as acceptors and donors, respectively. In these heterobinuclear compounds, the methyl groups do not influence the energy transfer efficiency, which is estimated to be above 90?%. However, they do limit the charge-transfer character of the acceptor's excited state, as well as its rotational degree of freedom, thus avoiding the detrimental effect upon the photophysical performance.  相似文献   

2.
A series of novel CdII complexes based on α,β‐unsubstituted dipyrrin ligands (dpm) has been prepared and characterised both in solution and in the solid state. These compounds are of the [Cd(dpm)2] type, with the coordination sphere of the metal centre occupied by two dpm chelates. Interestingly, in contrast to what has been reported for the ZnII analogues, in the presence of a pyridyl‐ or imidazolyl‐appended dpm ligand, the coordination number of the CdII cation can be increased to six, leading to an octahedral coordination sphere. As a consequence, the formation of 1‐, 2‐, and 3D coordination polymers by self‐assembly is observed. Photophysical investigations of the discrete complexes and self‐assembled networks have demonstrated that both types of compounds are luminescent in the solid state.  相似文献   

3.
The synthesis, isomeric studies, and photophysical characterization of a series of multifunctional cyclometalated iridium(III) complexes containing a fluoro‐ or methyl‐substituted 2‐[3‐(N‐phenylcarbazolyl)]pyridine molecular framework are presented. All of the complexes are thermally stable solids and highly efficient electrophosphors. The optical, electrochemical, photo‐, and electrophosphorescence traits of these iridium phosphors have been studied in terms of the electronic nature and coordinating site of the aryl or pyridyl ring substituents. The correlation between the functional properties of these phosphors and the results of density functional theory calculations was made. Arising from the propensity of the electron‐rich carbazolyl group to facilitate hole injection/transport, the presence of such a moiety can increase the highest‐occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent phosphor with 2‐phenylpyridine ligands. Remarkably, the excited‐state properties can be manipulated through ligand and substituent effects that allow the tuning of phosphorescence energies from bluish green to deep red. Electrophosphorescent organic light‐emitting diodes (OLEDs) with outstanding device performance can be fabricated based on these materials, which show a maximum current efficiency of approximately 43.4 cd A?1, corresponding to an external quantum efficiency of approximately 12.9 % ph/el (photons per electron) and a power efficiency of approximately 33.4 Lm W?1 for the best device. The present work provides a new avenue for the rational design of multifunctional iridium–carbazolyl electrophosphors, by synthetically tailoring the carbazolyl pyridine ring that can reveal a superior device performance coupled with good color‐tuning versatility, suitable for multicolor‐display technology.  相似文献   

4.
Blue‐ and green‐emitting cyclometalated liquid‐crystalline iridium complexes are realized by using a modular strategy based on strongly mesogenic groups attached to an acetylacetonate ancillary ligand. The cyclometalated ligand dictates the photophysical properties of the materials, which are identical to those of the parent complexes. High hole mobilities, up to 0.004 cm2 V?1 s?1, were achieved after thermal annealing, while amorphous materials show hole mobilities of only approximately 10?7–10?6 cm2 V?1 s?1, similar to simple iridium complexes. The design strategy allows the facile preparation of phosphorescent liquid‐crystalline complexes with fine‐tuned photophysical properties.  相似文献   

5.
The bonding modes of the ligand di‐2‐pyridyl ketoxime towards half‐sandwich arene ruthenium, Cp*Rh and Cp*Ir complexes were investigated. Di‐2‐pyridyl ketoxime {pyC(py)NOH} react with metal precursor [Cp*IrCl2]2 to give cationic oxime complexes of the general formula [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1a ) and [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1b ), for which two coordination isomers were observed by NMR spectroscopy. The molecular structures of the complexes revealed that in the major isomer the oxime nitrogen and one of the pyridine nitrogen atoms are coordinated to the central iridium atom forming a five membered metallocycle, whereas in the minor isomer both the pyridine nitrogen atoms are coordinated to the iridium atom forming a six membered metallacyclic ring. Di‐2‐pyridyl ketoxime react with [(arene)MCl2]2 to form complexes bearing formula [(p‐cymene)Ru{pyC(py)NOH}Cl]PF6 ( 2 ); [(benzene)Ru{pyC(py)NOH}Cl]PF6 ( 3 ), and [Cp*Rh{pyC(py)NOH}Cl]PF6 ( 4 ). In case of complex 3 the ligand coordinates to the metal by using oxime nitrogen and one of the pyridine nitrogen atoms, whereas in complex 4 both the pyridine nitrogen atoms are coordinated to the metal ion. The complexes were fully characterized by spectroscopic techniques.  相似文献   

6.
A series of phosphorescent cyclometalated iridium complexes with 2,5‐diphenylpyridine‐based ligands has been synthesized and characterized to investigate the effect of the simple ligand modification on photophysics, thermostability and electrochemistry. The complexes have the general structure (CN)2Ir(acac), where CN is a monoanionic cyclometalating ligand [e.g. 2,5‐diphenylpyridyl (dppy), 2,5‐di(4‐methoxyphenyl)pyridyl (dmoppy), 2,5‐di(4‐ethoxyphenyl)pyridyl (deoppy) and 2,5‐di(4‐ethylphenyl)pyridyl (deppy)]. The absorption, emission, cyclic voltammetry and thermostability of the complexes were systematically investigated. The (dppy)2Ir(acac) has been characterized using X‐ray crystallography. Calculation on the electronic ground state of (dppy)2Ir(acac) was carried out using B3LYP density functional theory. The highest occupied molecular orbital (HOMO) level is a mixture of Ir and ligand orbitals, while the lowest occupied molecular orbital (LUMO) is predominantly dppy ligand‐based. Electrochemical studies showed the oxidation potentials of (dmoppy)2Ir(acac), (deoppy)2Ir(acac), (deppy)2Ir(acac) were smaller than that of (ppy)2Ir(acac), while the oxidation potential of (dppy)2Ir(acac) was larger relative to (ppy)2Ir(acac). The 10% weight reduction temperatures of these complexes were above that of (ppy)2Ir(acac). All complexes exhibited intense green photoluminescence, which has been attributed to MLCT triplet emission. The maximum emission wavelengths in CH2Cl2 at room temperature were in the range 531–544 nm, which is more red‐shifted than that of (ppy)2Ir(acac). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A series of tetracyanoruthenate(II) with chelating pyridyl N‐heterocyclic carbene ligands (NHC‐py) was synthesized and characterized. Their photophysical and electrochemical properties as well as the photochromic behavior of their dithienylethene‐containing complexes were studied. Photocyclization was found to take place upon irradiation into the metal‐to‐ligand charge transfer (MLCT) absorption bands of these complexes, and evidence is provided to support the triplet‐sensitizing reaction pathway.  相似文献   

8.
An elaborated theoretical investigation on the optical and electronic properties of three fluorene‐based platinum(II) and iridium(III) cyclometalated complexes Pt‐a , Ir‐a and Ir‐b is reported. The geometric and electronic structures of the complexes in the ground state are studied with density functional theory and Hartree Fock approaches, while the lowest triplet excited states are optimized by singles configuration interaction (CIS) methods. At the time‐dependent density functional theory (TD‐DFT) level, molecular absorption and emission properties were calculated on the basis of optimized ground‐ and excited‐state geometries, respectively. The computational results show that the appearance of triphenylamino (TPA) moiety at the 9‐position of fluorene ring favors the hole‐creation and leads to red‐shifts of absorption and emission spectra. Moreover, Pt‐a and Ir‐b are nice hole‐transporting materials whereas Ir‐a has good charge‐transfer balance, which render them useful for the realization of efficient OLEDs (Organic Light‐Emitting Diodes).  相似文献   

9.
A recently reported new class of ruthenium complexes containing 2,2′‐bipyridine and a dipyrrin ligand in the coordination sphere exhibit both strong metal‐to‐ligand charge‐transfer (MLCT) and π–π* transitions. Quantitative analysis of the resonance Raman scattering intensities and absorption spectra reveals only weak electronic interactions between these states despite direct coordination of the bipyridyl and dipyrrin ligands to the central ruthenium atom. On the basis of DFT calculations and time‐dependent DFT (TD‐DFT), we propose that the electronic excited states closely resemble “pure” MLCT and π–π* states. Resonance Raman intensity analysis demonstrates that a large amplitude transannular torsional motion provides a mechanism for relaxation on the π–π* excited‐state surface. We assert that this result is generally applicable to a range of dipyrrin complexes such as boron–dipyrrin and metallodipyrrin systems. Despite the large torsional distortion between the phenyl ring and the dipyrromethene plane, π–π* excitation extends out onto the phenyl ring which may have important consequences in solar‐energy‐conversion applications of ruthenium–dipyrrin complexes.  相似文献   

10.
Photophysical properties are reported for a series of cyclometalated platinum and iridium complexes that can serve as photosensitizers for singlet oxygen. The complexes have the formula (C;N)(2)Ir(O;O) or (C;N)Pt(O;O) where C;N is a monoanionic cyclometalating ligand such as 2-(phenyl)pyridyl and 2-(phenyl)quinolyl, and O;O is the ancillary ligand acetylacetonate (acac) or dipivaloylmethane (dpm). Also examined were a series of (N;N)PtMe(2) complexes where N;N is a diimine such as 2,2'-bipyridyl. In general, the cyclometalated complexes are excellent photosensitizers for the production of singlet oxygen, while the (N;N)PtMe(2) complexes were ineffective at this reaction. Quantum yields of singlet oxygen production range from 0.9-1.0 for the cyclometalated Pt complexes and 0.5-0.9 for Ir complexes. Luminescence quenching and singlet oxygen formation of the Ir complexes occurs from a combination of electron and energy transfer processes, whereas the Pt complexes only react by energy transfer. For Ir complexes with low emission energy, physical deactivation of the triplet excited state becomes competitive with energy transfer to ground state dioxygen. The rates of singlet oxygen quenching for the complexes presented here are in the range 6 x 10(6)-2 x 10(7) M(-1) s(-1) for Pt complexes and 2 x 10(5)-2 x 10(7) M(-1) s(-1) for Ir complexes, respectively. Differences in the efficiency of both forming and quenching singlet oxygen between the Ir and Pt cyclometalates are believed to come about from the more exposed coordination geometry in the latter species.  相似文献   

11.
The synthesis, characterization, photophysical properties, and theoretical analysis of a series of tetraaza porphyrin analogues ( H? Pn : n=1–4) containing a dipyrrin subunit and an embedded 1,10‐phenanthroline subunit are described. The meso‐phenyl‐substituted derivative ( H? P1 ) interacts with a Mg2+ salt (e.g., MgCl2, MgBr2, MgI2, Mg(ClO4)2, and Mg(OAc)2) in MeCN solution, thereby giving rise to a cation‐dependent red‐shift in both the absorbance‐ and emission maxima. In this system, as well as in the other H? Pn porphyrin analogues used in this study, the four nitrogen atoms of the ligand interact with the bound magnesium cation to form Mg2+–dipyrrin–phenanthroline complexes of the general structure MgX? Pn (X=counteranion). Both single‐crystal X‐ray diffraction analysis of the corresponding zinc‐chloride derivative ( ZnCl? P1 ) and fluorescence spectroscopy of the Mg‐adducts that are formed from various metal salts provide support for the conclusion that, in complexes such as MgCl? P1 , a distorted square‐pyramidal geometry persists about the metal cation wherein a chloride anion acts as an axial counteranion. Several analogues ( H? Pn ) that contain electron‐donating and/or electron‐withdrawing dipyrrin moieties were prepared in an effort to understand the structure–property relationships and the photophysical attributes of these Mg–dipyrrin complexes. Analysis of various MgX? Pn (X=anion) systems revealed significant substitution effects on their chemical, electrochemical, and photophysical properties, as well as on the Mg2+‐cation affinities. The fluorescence properties of MgCl? Pn reflected the effect of donor‐excited photoinduced electron transfer (dPET) processes from the dipyrrin subunit (as a donor site) to the 1,10‐phenanthroline acceptor subunit. The proposed dPET process was analyzed by electron paramagnetic resonance (EPR) spectroscopy and by femtosecond transient absorption (TA) spectroscopy, as well as by theoretical DFT calculations. Taken together, these studies provide support for the suggestion that a radical species is produced as the result of an intramolecular charge‐transfer process, following photoexcitation. These photophysical effects, combined with a mixed dipyrrin–phenanthroline structure that is capable of effective Mg2+‐cation complexation, lead us to suggest that porphyrin‐inspired systems, such as H? Pn , have a role to play as magnesium‐cation sensors.  相似文献   

12.
A new series of luminescent mu-pyrazolate-bridged cyclometalated platinum binuclear complexes having the formula CwedgeNPt(mu-pz')2PtCwedgeN (CwedgeN = 2-(2,4-difluorophenyl)pyridyl, pz' = pyrazolate for 1, 3,5-dimethylpyrazolate for 2, 3-methyl-5-tert-butylpyrazolate for 3, and 3,5-bis(tert-butyl)pyrazolate for 4) have been synthesized and characterized. The two Pt(CwedgeN) moieties are bridged by two mu-pyrazolate ligands in an exo-bidentate fashion. A mononuclear complex with an isolated Pt center, CwedgeNPt(pz)2BEt2, 5, is also described. The X-ray crystal structures of 1-4 show the following Pt-Pt spacings: 1 = 3.3763(7) A, 2 = 3.1914(9) A, 3 = 3.0457(7) A, and 4 = 2.8343(6) A. At 77 K, the emission energy of the complexes varies from blue (for 1, 2, and 5) to green (for 3) to red (for 4). The changes in the photophysical properties of the binuclear complexes can be correlated with the decreasing Pt-Pt distance; the emissive state changes from a mixed ligand center triplet/metal-to-ligand charge transfer excited state (for 1 and 2) to a lower-energy, Pt-Pt metal-metal-to-ligand charge transfer state (for 3 and 4).  相似文献   

13.
Twelve iridium complexes with general formula of Ir(C^N)2(LX) [C^N represents the cyclometalated ligand, i.e. 2‐(2,4‐difluorophenyl) pyridine (dfppy), 2‐phenylpyridine (ppy), dibenzo{f, h}quinoxaline (DBQ); LX stands for β‐diketonate, i.e. acetyl acetonate (acac), 1‐(carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐diketonate (CBDK), 1‐(carbazol‐9‐yl)‐5,5,6,6,7,7,7‐heptafluoroheptane‐2,4‐diketonate (CHFDK), 1‐(N‐ethyl‐carbazol‐3‐yl)‐4,4,5,5,6,6,6‐heptafluorohexane‐1,3‐diketonate (ECHFDK)] are synthesized, characterized and their photophysical properties are systemically studied. In addition, crystals of Ir(DBQ)2(CHFDK) and Ir(DBQ)2(acac) are obtained and characterized by single crystal X‐ray diffraction. The choice of these iridium complexes provides an opportunity for tracing the effect of the triplet energy level of ancillary ligands on the photophysical and electrochemical behaviors. Data show that if the triplet energy level of the β‐diketonate is higher than that of the Ir(C^N)2 fragment and there is no superposition on the state density map, strong 3LC or 3MLCT‐based phosphorescence can be obtained. Alternatively, if the state density map of the two parts are in superposition, the 3LC or 3MLCT‐based transition will be quenched at room temperature. Density functional theory calculations show that these complexes can be divided into two categories. The lowest excited state is mainly determined by C^N but not β‐diketonate when the difference between the triplet energy levels of the two parts is large. However, when this difference is very small, the lowest excited state will be determined by both sides. This provides a satisfactory explanation for the experimental observations.  相似文献   

14.
Novel conjugated, pyridyl‐functionalised triazaphospholes with either tBu or SiMe3 substituents at the 5‐position of the N3PC heterocycle have been prepared by a [3+2] cycloaddition reaction and compared with structurally related, triazole‐based systems. Photoexcitation of the 2‐pyridyl‐substituted triazaphosphole gives rise to a significant fluorescence emission with a quantum yield of up to 12 %. In contrast, the all‐nitrogen triazole analogue shows no emission at all. DFT calculations indicate that the 2‐pyridyl substituted systems have a more rigid and planar structure than their 3‐ and 4‐pyridyl isomers. Time‐dependent (TD) DFT calculations show that only the 2‐pyridyl‐substituted triazaphosphole exhibits similar planar geometry, with matching conformational arrangements in the lowest energy excited state and the ground state; this helps to explain the enhanced emission intensity. The chelating P,N‐hybrid ligand forms a ReI complex of the type [(N^N)Re(CO)3Br] through the coordination of nitrogen atom N2 to the metal centre rather than through the phosphorus donor. Both structural and spectroscopic data indicate substantial π‐accepting character of the triazaphosphole, which is again in contrast to that of the all‐nitrogen‐containing triazoles. The synthesis and photophysical properties of a new class of phosphorus‐containing extended π systems are described.  相似文献   

15.
An efficient iridium‐catalyzed asymmetric hydrogenation of substituted benzothiophene 1,1‐dioxides is described. The use of iridium complexes with chiral pyridyl phosphinite ligands provides access to highly enantiomerically enriched sulfones with substituents at the 2‐ and 3‐position. Sulfones of this type are of interest as core structures of agrochemicals and pharmaceuticals. Moreover, they can be further reduced to chiral 2,3‐dihydrobenzothiophenes.  相似文献   

16.
An iridium(III) complex comprising three different cyclometalated phenylpyridine‐based ligands was designed and synthesized. Interestingly, mixed‐ligand complexes could be obtained by using a simple and straightforward procedure. A tris(heteroleptic) IrIII complex was obtained as a mixture of stereoisomers that could not be separated. Photophysical properties of the tris(heteroleptic) complex was investigated by UV/VIS absorption and luminescence spectroscopy, and compared with those of the parent homoleptic complexes. Modelling by time‐dependent density functional theory (TD‐DFT) was also performed to elucidate the nature and the location of the excited state, and to support the experimental results.  相似文献   

17.
A strategy for the formation of heterometallic coordination polymers based on novel copper(II) and cobalt(III) heteroleptic complexes (acacCN)Cu(dpm) and (acacCN)Co(dpm)(2) (acacCN = 3-cyanoacetylacetonate; dpm = dipyrrin) is presented. Using dipyrrins appended with a p- or m-pyridyl group, dpm-4py and dpm-3py, four novel copper and cobalt complexes were prepared and characterized both in solution and in the solid state. These two classes of complexes show different electrochemical properties upon investigation by cyclic voltammetry in CH(2)Cl(2). While the copper complexes show only irreversible reduction processes, the voltammogram of the cobalt species reveals the presence of two quasi-reversible reductions. In the solid state, the copper(II) compounds self-assemble to form one-dimensional architectures upon coordination of the peripheral pyridyl group to the copper center, as characterized by single-crystal X-ray diffraction. Owing to the filled coordination sphere of the octahedral cobalt centers, the (acacCN)Co(dpm-py)(2) compounds crystallize as isolated molecules. Upon reaction with silver salts, these complexes form crystalline heterometallic architectures with different organization and dimensionality, depending on the nature of the metal center and the position of the nitrogen atom in the pyridyl group. The two copper complexes lead to the formation of trinuclear species, {[(acacCN)Cu(dpm-py)](2)Ag}(+), resulting from coordination of the pyridyl groups to the silver cations. However, while meta-functionalized complexes self-assemble into an extended architecture via weak interaction of the peripheral nitrile of the acacCN ligand to the Ag(+) cation, this interaction is not present in the para-functionalized analogue. In both networks based on the Ag(BF(4)) salt, coordination of the tetrafluoroborate anion to the silver center in the rather rare chelate mode is observed. Upon assembly of the cobalt metallatectons with silver salts, two-dimensional (2D) coordination polymers are obtained in crystalline form, resulting, however, from different sets of interactions. Indeed, no coordination of the peripheral nitrile of the acacCN ligand is observed in the network incorporating the m-pyridyl-appended dpm; coordination of the pyridyl groups to the silver center and d(10)-d(10) interactions lead to a 2D architecture. In the case of the para analogue, a 2D honeycomb network is observed owing to coordination of the Ag(I) ion to two pyridyl nitrogen atoms and to one peripheral nitrile group of a acacCN ligand. This latter polymer represents a geometrical hybrid of the networks reported in the literature based on homoleptic Co(dpm-4py)(3) and Cr(acacCN)(3) complexes.  相似文献   

18.
A series of cyclometalated PdII complexes that contain π‐extended R? C^N^N? R′ (R? C^N^N? R′=3‐(6′‐aryl‐2′‐pyridinyl)isoquinoline) and chloride/pentafluorophenylacetylide ligands have been synthesized and their photophysical and photochemical properties examined. The complexes with the chloride ligand are emissive only in the solid state and in glassy solutions at 77 K, whereas the ones with the pentafluorophenylacetylide ligand show phosphorescence in the solid state (λmax=584–632 nm) and in solution (λmax=533–602 nm) at room temperature. Some of the complexes with the pentafluorophenylacetylide ligand show emission with λmax at 585–602 nm upon an increase in the complex concentration in solutions. These PdII complexes can act as photosensitizers for the light‐induced aerobic oxidation of amines. In the presence of 0.1 mol % PdII complex, secondary amines can be oxidized to the corresponding imines with substrate conversions and product yields up to 100 and 99 %, respectively. In the presence of 0.15 mol % PdII complex, the oxidative cyanation of tertiary amines could be performed with product yields up to 91 %. The PdII complexes have also been used to sensitize photochemical hydrogen production with a three‐component system that comprises the PdII complex, [Co(dmgH)2(py)Cl] (dmgH=dimethylglyoxime; py=pyridine), and triethanolamine, and a maximum turnover of hydrogen production of 175 in 4 h was achieved. The excited‐state electron‐transfer properties of the PdII complexes have been examined.  相似文献   

19.
Bimetallic complexes have become an emerging hot topic in field of luminous applications in recent years. Unlike the traditional modification on a cyclometalated ligand, grafting an additional metal ion provides a novel approach to tune molecular conjugation as well as the spin orbital coupling (SOC). Herein, we demonstrate a new kind of binuclear platinum(II) complex Pt‐3 that possesses an asymmetric thiophenpyridine‐isoquinoline bridging ligand. Compared to its mononuclear analogues of Pt‐1 and Pt‐2, an extremely large redshift emission from 576 and 618 nm to 721 nm was observed in solution. Binding of two metal ions helps to enhance molecular planarity, extend conjugation and suppress excited state distortion. However, their quantum yields tend to remarkably decrease with increasing red‐shift emission as following the “energy gap law”. The relatively larger HOMO/LUMO separation that induced by the second platinum ion also decreases the oscillator strength at the lowest singlet state, and goes against the fast radiative decay process. Solution‐processed organic light‐emitting diodes (OLEDs) based on Pt‐1, Pt‐2 and Pt‐3 achieved external quantum efficiencies (EQEs) and luminance/radiant emittance of 13.6% and 13640 cd/m2, 3.5% and 3754 cd/m2, 0.9% and 7981 mW/Sr/m2 with the corresponding electroluminescent (EL) emission peaked at 580 nm, 625 nm and 708 nm, respectively. This work emphasizes the complement argument of the commonly largely reported symmetric binuclear configurations, and provides a new view to photophysical mechanism and design strategies for bimetallic species.  相似文献   

20.
The first examples of iridium(III) complexes containing a terdentate, N--C--N-coordinated 1,3-di(2-pyridyl)benzene derivative, cyclometalated at C2 of the benzene ring, are reported. This mode of binding becomes significant only if competitive cyclometalation at C4/C6 is blocked, and the ligand 1,3-di(2-pyridyl)-4,6-dimethylbenzene (dpyxH) has been prepared to achieve this condition. The charge-neutral complex [Ir(dpyx)(dppy)], 2, (dppyH(2) = 2,6-diphenylpyridine) has been isolated, containing dpyx and dppy bound to the metal through one and two carbon atoms, respectively. A terpyridyl analogue, [Ir(dpyx)(ttpy)](PF(6))(2), 3, (ttpy = 4'-tolylterpyridine) has also been prepared and its X-ray crystal structure determined, confirming the N--C--N binding mode of dpyx. Complex 2 emits strongly in degassed solution at 295 K (lambda(max) = 585 nm, phi = 0.21, tau = 3900 ns, in CH(3)CN). In solution, the excited state can also undergo photodissociation, through cleavage of one of the Ir-C(dppy) bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号