共查询到20条相似文献,搜索用时 15 毫秒
1.
Excited‐State Intramolecular Proton Transfer: Photoswitching in Salicylidene Methylamine Derivatives 下载免费PDF全文
Joanna Jankowska Dr. Michał F. Rode Prof. Joanna Sadlej Prof. Andrzej L. Sobolewski 《Chemphyschem》2014,15(8):1643-1652
The effect of chemical substitutions on the photophysical properties of the salicylidene methylamine molecule (SMA) (J. Jankowska, M. F. Rode, J. Sadlej, A. L. Sobolewski, ChemPhysChem, 2012 , 13, 4287–4294) is studied with the aid of ab initio electronic structure methods. It is shown that combining π‐electron‐donating and π‐electron‐withdrawing substituents results in an electron‐density push‐and‐pull effect on the energetic landscape of the ground and the lowest excited ππ* and nπ* singlet states of the system. The presented search for the most appropriate SMA derivatives with respect to their photoswitching functionality offers an efficient prescreening tool for finding chemical structures before real synthetic realization. 相似文献
2.
3.
《Chemphyschem》2003,4(5):445-456
The dissociation dynamics of trans‐azomethane upon excitation to the S1(n,π*) state with a total energy of 93 kcal mol?1 is investigated using femtosecond‐resolved mass spectrometry in a molecular beam. The transient signal shows an opposite pump–probe excitation feature for the UV (307 nm) and the visible (615 nm) pulses at the perpendicular polarization in comparison with the signal obtained at the parallel polarization: The one‐photon symmetry‐forbidden process excited by the UV pulse is dominant at the perpendicular polarization, whereas the two‐photon symmetry‐allowed process initiated by the visible pulse prevails at the parallel polarization. At the perpendicular polarization, we found that the two C? N bonds of the molecule break in a stepwise manner, that is, the first C? N bond breaks in ≈70 fs followed by the second one in ≈100 fs, with the intermediate characterized. At the parallel polarization, the first C? N bond cleavage was found to occur in 100 fs with the intensity of the symmetry‐allowed transition being one order of magnitude greater than the intensity of the symmetry‐forbidden transition at the perpendicular polarization. Theoretical calculations using time‐dependent density functional theory (TDDFT) and the complete active space self‐consistent field (CASSCF) method have been carried out to characterize the potential energy surface for the ground state, the low‐lying excited states, and the cationic ground state at various levels of theory. Combining the experimental and theoretical results, we identified the elementary steps in the mechanism: The initial driving force of the ultrafast bond‐breaking process of trans‐azomethane (at the perpendicular polarization) is due to the CNNC torsional motion initiated by the vibronic coupling through an intensity‐borrowing mechanism for the symmetry‐forbidden n–π* transition. Following this torsional motion and the associated molecular symmetry breaking, an S0/S1 conical intersection (CI) can be reached at a torsional angle of 93.1° (predicted at the CASSCF(8,7)/cc‐pVDZ level of theory). Funneling through the S0/S1 CI could activate the asymmetric C? N stretching motion, which is the key motion for the consecutive C? N bond breakages on the femtosecond time scale. 相似文献
4.
Excited-state properties and environmental effects for protonated schiff bases: a theoretical study.
Complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), density functional theory (DFT), time dependent DFT (TDDFT) and the singles and doubles coupled-cluster (CC2) methodologies have been used to study the ground state and excited states of protonated and neutral Schiff bases (PSB and SB) as models for the retinal chromophore. Systems with two to four conjugated double bonds are investigated. Geometry relaxation effects are studied in the excited pipi* state using the aforementioned methods. Taking the MRCI results as reference we find that CASSCF results are quite reliable even though overshooting of geometry changes is observed. TDDFT does not reproduce bond alternation well in the pipi* state. CC2 takes an intermediate position. Environmental effects due to solvent or protein surroundings have been studied in the excited states of the PSBs and SBs using a water molecule and solvated formate as model cases. Particular emphasis is given to the proton transfer process from the PSB to its solvent partner in the excited state. It is found that its feasibility is significantly enhanced in the excited state as compared to the ground state, which means that a proton transfer could be initiated already at an early step in the photodynamics of PSBs. 相似文献
5.
《Journal of Coordination Chemistry》2012,65(1-3):227-230
Abstract Aromatic Schiff bases having extended II-electron systems and their charge transfer (CT) complexes have been prepared and subjected to structural, optical, and electrical conductivity studies. It is demonstrated by the X-ray crystal-lographic study that the hydroxyl protons form hydrogen bonds to the imino nitrogens, strength of which can be varied by chemical modification of the molecules. Intramolecular proton transfer takes place in solid state and is manifested in the thermochromic spectral changes. 相似文献
6.
7.
A. A. Soliman 《Journal of Thermal Analysis and Calorimetry》2001,63(1):221-231
New cadmium complexes of the salicylidene-2-amino-thiophenol (I) and 3-methoxysalicylidene-2-amino-thiophenol (II) Schiff bases have been prepared and characterized by elemental analyses, IR, 1H-NMR spectra, conductimetric and thermogravimetric analyses. The results suggested that the Schiff bases are bivalent anions with tridentate ONS donors derived from the phenolic oxygen azomethine nitrogen and thiophenolic sulphur. The formulae are found to be [MLH2O] and [ML2]for the 1:1 and 1:2 non-electrolytic complexes, respectively. The thermal decomposition of the complexes follows first order kinetics and the thermodynamic parameters of the decomposition are reported.This revised version was published online in November 2005 with corrections to the Cover Date. 相似文献
8.
9.
10.
This work is devoted to a consideration of methods of electrochemical synthesis of redox polymers poly[M(Schiff)], where “M” is Ni, or Pd and “Schiff” stands for a four-dentate Schiff base, with a controlled distribution of structural elements (stacks) over the electrode's surface for the optimization of the transport of charge-compensating ions, which is the stage that determines the charge transfer rate in the system under consideration. It is shown that the structuring of these polymers on a molecular level by means of a purposeful selection of the composition of the initial compounds and the conditions of synthesis—the potential of formation and the nature of the solvent and supporting electrolyte—makes it possible to a considerable extent accelerate the charge transfer process in the polymers and improve stability of their electrochemical characteristics. 相似文献
11.
Dr. Julien Briand Dr. Stefania Fusi Dr. Riccardo Rossi Paccani Prof. Massimo Olivucci Prof. Stefan Haacke 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(48):15296-15304
The coherent photoisomerization of a chromophore in condensed phase is a rare process in which light energy is funneled into specific molecular vibrations during electronic relaxation from the excited to the ground state. In this work, we employed ultrafast spectroscopy and computational methods to investigate the molecular origin of the coherent motion accompanying the photoisomerization of indanylidene–pyrroline (IP) molecular switches. UV/Vis femtosecond transient absorption gave evidence for an excited‐ and ground‐state vibrational wave packet, which appears as a general feature of the IP compounds investigated. In close resemblance to the coherent photoisomerization of rhodopsin, the sudden onset of a far‐red‐detuned and rapidly blue‐shifting photoproduct signature indicated that the population arriving on the electronic ground state after nonadiabatic decay through the conical intersection (CI) is still very focused in the form of a vibrational wave packet. Semiclassical trajectories were employed to investigate the reaction mechanism. Their analysis showed that coupled double‐bond twisting and ring inversions, already populated during the excited‐state reactive motion, induced periodic changes in π‐conjugation that modulate the ground‐state absorption after the non‐adiabatic decay. This prediction further supports that the observed ground‐state oscillation results from the reactive motion, which is in line with a biomimetic, coherent photoisomerization scenario. The IP compounds thus appear as a model system to investigate the mechanism of mode‐selective photomechanical energy transduction. The presented mechanism opens new perspectives for energy transduction at the molecular level, with applications to the design of efficient molecular devices. 相似文献
12.
Andrea Haug Sabine Schweizer Florian Latteyer Maria Benedetta Casu Dr. Heiko Peisert Dr. Christian Ochsenfeld Prof. Thomas Chassé Prof. 《Chemphyschem》2008,9(5):740-747
The structures of the DNA and RNA bases cytosine, uracil, and thymine in thin films with a nominal film thickness of about 20 nm are studied by using X‐ray photoemission spectroscopy (XPS) and Fourier‐transform infrared spectroscopy. The molecules are evaporated in situ from powder on a gold foil. The experimental results indicate that cytosine is composed of two energetically close tautomeric forms, whereas uracil and thymine exist in only one tautomeric form. Additionally, quantum chemical calculations are performed to complement the experimental results. The relative energies of the tautomeric forms of cytosine, uracil, and thymine are calculated using Hartree–Fock (HF), density functional theory (DFT), and post‐HF methods. Furthermore, the assignment of the XPS spectra is supported by using simple model considerations employing Koopmans ionization energies and Mulliken net atomic charges. 相似文献
13.
14.
Prof. Dr. Axel G. Griesbeck Dr. Yrene Díaz‐Miara Dr. Robert Fichtler Prof. Dr. Axel Jacobi von Wangelin Dr. Raúl Pérez‐Ruiz Dr. Diego Sampedro 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(28):9975-9979
A surprising 20‐fold increase in chemiluminescence efficiency was observed for dialkyl luminol derivatives in comparison with the parent compound. This effect could be a direct consequence of steric gearing which facilitates the transition from the intermediate endoperoxide to the electronically excited phthalate. Mechanistic aspects of this process have been supported by computational calculations (CASPT2//CASSCF). 相似文献
15.
Gadusol shows one of the simplest structures among a series of natural UV-absorbing compounds that have been related to the photoprotective and antioxidant functions in aquatic organisms. CASPT2//CASSCF methodology was used to carry out a theoretical study on this basic structure in order to describe the underlying features responsible for the photoprotective capacity of the molecule. The influence of the enol–enolate equilibrium on the photophysical properties was explored. The results confirm that both forms undergo a rapid deactivation, which very efficiently dissipates light energy as heat. This work highlights the potential of molecular-level studies to provide an understanding of natural photoprotective mechanisms and gives support to the future design of structurally related new synthetic sunscreens. 相似文献
16.
Leszek M. Malec Dr. Mateusz Z. Brela Prof. Katarzyna M. Stadnicka 《Chemphyschem》2023,24(3):e202200517
In this work, the dynamic character of hydrogen-bond (H-bond) networks in two three-component crystals comprising polycationic chains was described. The first studied system was 1,4-diazabicyclo[2.2.2]octan-1-ium (DABCOH+) sulfamate monohydrate, known for its large negative linear compressibility. The second analyzed material was the newly obtained polar salt co-crystal: 1,4-diazabicyclo[2.2.2]octan-1-ium sulfamate urea. X-ray diffraction measurements enabled us to study the H-bond systems in both crystals using the graph set analysis. Obtained structures served as the initial models for Born-Oppenheimer molecular dynamics computations. A detailed study of intermolecular interactions and power spectra was conducted. The analysis of time and space correlations between the changes in H-bonds enabled the detection of proton transfer occurring in both systems at 300 K. Further study of those dynamic phenomena was done using the Energy Decomposition Analysis for selected trajectory fragments. Our work should improve the understanding of dielectric and ferroelectric properties of hybrid organic-inorganic materials. 相似文献
17.
Gonzalo Angulo Dr. Jakob Grilj Eric Vauthey Prof. Luis Serrano‐Andrés Prof. Òscar Rubio‐Pons Dr. Patrice Jacques Prof. 《Chemphyschem》2010,11(2):480-488
The experimental ultrafast photophysics of thioxanthone in several aprotic organic solvents at room temperature is presented, measured using femtosecond transient absorption together with high‐level ab initio CASPT2 calculations of the singlet‐ and triplet‐state manifolds in the gas phase, including computed state minima and conical intersections, transition energies, oscillator strengths, and spin–orbit coupling terms. The initially populated singlet ππ* state is shown to decay through internal conversion and intersystem crossing processes via intermediate nπ* singlet and triplet states, respectively. Two easily accessible conical intersections explain the favorable internal conversion rates and low fluorescence quantum yields in nonpolar media. The presence of a singlet–triplet crossing near the singlet ππ* minimum and the large spin–orbit coupling terms also rationalize the high intersystem crossing rates. A phenomenological kinetic scheme is proposed that accounts for the decrease in internal conversion and intersystem crossing (i.e. the very large experimental crescendo of the fluorescence quantum yield) with the increase of solvent polarity. 相似文献
18.
19.
Dr. Mahesh Gudem Dr. Markus Kowalewski 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(40):e202200781
Triplet-triplet annihilation (TTA) is a spin-allowed conversion of two triplet states into one singlet excited state, which provides an efficient route to generate a photon of higher frequency than the incident light. Multiple energy transfer steps between absorbing (sensitizer) and emitting (annihilator) molecular species are involved in the TTA based photon upconversion process. TTA compounds have recently been studied for solar energy applications, even though the maximum upconversion efficiency of 50 % is yet to be achieved. With the aid of quantum calculations and based on a few key requirements, several design principles have been established to develop the well-functioning annihilators. However, a complete molecular level understanding of triplet fusion dynamics is still missing. In this work, we have employed multi-reference electronic structure methods along with quantum dynamics to obtain a detailed and fundamental understanding of TTA mechanism in naphthalene. Our results suggest that the TTA process in naphthalene is mediated by conical intersections. In addition, we have explored the triplet fusion dynamics under the influence of strong light-matter coupling and found an increase of the TTA based upconversion efficiency. 相似文献