首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Molecularly imprinted polymer (MIP) films of melamine were prepared by photopolymerization of vinylic monomers on diazonium‐modified gold electrodes. The gold‐grafted MIPs are specific and selective for melamine in either organic or aqueous media. The interferent molecules cyromazine and cyanuric acid were not recognized by the MIPs. The limit of detection was as low as 1.75×10?12 mol L?1 at S/N=3. Efficiency of melamine rebinding is related to the solubility parameter of the organic solvent or pH and ionic strength of the aqueous medium. It is concluded that diazonium salts permit to design robust electrochemical MIP sensors.  相似文献   

2.
The title compound, 2‐amino‐5‐carboxy­pyridinium chloride, C6H7N2O2+·Cl?, was isolated from a 1 M HCl aqueous solution containing 2‐amino‐5‐cyano­pyridine. The structure is held together by extensive hydrogen bonding between the chloride ions and the carboxylic acid, amino and pyridinium H atoms. The mol­ecules pack as sheets, with the sheets at a distance of 3.21 (3) Å from one another.  相似文献   

3.
MOGHIMI  Ali 《中国化学》2007,25(10):1536-1541
Silica gel-loaded (E)-N-(1-thien-2'-ylethylidene)-1,2-phenylenediamine (TEPDA) phase was synthesized based on physical adsorption approaches. The stability of a chemically modified TEPDA especially in concentrated hydrochloric acid that was then used as a recycling and preconcentration reagent allowed the further uses of silica gel-loaded immobilized TEPDA phase. The application of this silica gel-loaded phase to sorption of a series of metal ions was performed by using different controlling factors such as the pH of the metal ion solution and the equilibration shaking time by the static technique. This difference was interpreted on the basis of selectivity incorporated in these sulfur containing silica gel-loaded TEPDA phases. Hg(Ⅱ) was found to exhibit the highest affinity towards extraction by these silica gel-loaded TEPDA phases. The pronounced selectivity was also confirmed by the determined distribution coefficients (Kd) of all the metal ions, showing the highest value reported for mercury(Ⅱ) extraction by the silica gel immobilized TEPDA phase. The potential applications of the silica gel immobilized TEPDA phase to selective extraction of mercury(Ⅱ) from aqueous solution were successfully accomplished and preconcentration of low concentration of Hg(Ⅱ) (30 pg·mL^-1) from natural tap water with a preconcentration factor of 200 for Hg(Ⅱ) off-line analysis was conducted by cold vapor atomic absorption analysis.  相似文献   

4.
A series of an ionic hydrogels composed of N,N‐diethylaminoethyl methacrylamide (DEAEMA), N‐vinyl‐2‐pyrrolidone (VP), and itaconic acid were synthesized by free‐radical cross‐linking copolymerization in water–ethanol mixture by using N,N‐methylenebis(acrylamide) as the cross‐linker, ammonium persulfate as the initiator, and N,N,N′,N′‐tetramethylenediamine as the activator. The swelling behaviors of these hydrogels were analyzed in buffer solutions at various pH. It was observed that the swelling behavior of cross‐linked ionic poly(N,N‐diethylaminoethyl methacrylamide‐coN‐vinyl‐2‐pyrrolidone) [P(DEAEMA/VP)] hydrogels at different pH agreed with the modified Flory–Rehner equation based on the affine network model and the ideal Donnan theory. The swelling process in buffer solutions at various pH was found to be Fickian‐type diffusion. The pH‐reversibility and on–off switching properties of the P(DEAEMA/VP) hydrogels may be considered as good candidate to design novel drug‐delivery system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2819–2828, 2005  相似文献   

5.
Here, task‐specific ionic liquid solid‐phase extraction is proposed for the first time. In this approach, a thiourea‐functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid‐phase extraction column are used for the selective extraction and preconcentration of ultra‐trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5–40.0 ng/mL with the detection limit of 0.13 ng/mL (3sb/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents.  相似文献   

6.
Abstract. Two bis‐triazole‐bis‐amide‐based copper(II) pyridine‐2,3‐dicarboxylate coordination polymers (CPs), [Cu(2,3‐pydc)(dtb)0.5(DMF)] · 2H2O ( 1 ) and [Cu(2,3‐pydc)(dth)0.5(DMF)] · 2H2O ( 2 ) (2,3‐H2pydc = pyridine‐2,3‐dicarboxylic acid, dtb = N,N′‐bis(4H‐1,2,4‐triazole)butanamide, and dth = N,N′‐bis(4H‐1,2,4‐triazole)hexanamide), were synthesized under solvothermal conditions. CPs 1 and 2 show similar two‐dimensional (2D) structures. In 1 , the 2,3‐pydc anions bridge the CuII ions into a one‐dimensional (1D) chain. Such 1D chains are linked by the dtb ligands to form a 2D layer. The adjacent 2D layers are extended into a three‐dimensional (3D) supramolecular architecture by hydrogen‐bonding interactions. The electrochemical properties of 1 and 2 were investigated.  相似文献   

7.
The synthesis and characterization of the water‐soluble poly(N‐acetyl‐α‐acrylic acid) by radical polymerization were carried out. The polymer was characterized by Fourier Transform Infrared (FT‐IR), 1H NMR and 13C NMR spectroscopies, and thermogravimetric analysis (TGA). The metal ion binding properties for the metals Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), Hg(II), Cr(III) in the aqueous phase were studied using the liquid‐phase polymer‐based retention technique. The metal ion interactions with the hydrophilic polymer were determined as a function of pH and of the filtration factor. The polychelatogen showed a high affinity for metal ions and higher selectivity for Cr(III) at pH = 3.  相似文献   

8.
《Electroanalysis》2017,29(2):324-329
An indium tin oxide (ITO) electrode prepared on a flexible polymeric support was modified with an amino‐silane and then functionalized with trigonelline and 4‐carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized ammonium group produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer‐modified electrode was positive at the neutral pH and negative at pH>9 (note that 4‐carboxyphenylboronic acid was attached to the electrode surface in excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH). Single‐stranded DNA molecules were loaded on the modified electrode at pH 7.0 due to their electrostatic attraction to the positively charged surface. By applying electrolysis at −1.0 V (vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase in the vicinity of the electrode surface. The process resulted in the transition to the total negative charge due to the negative charges formed on the phenylboronic acid species. This resulted in the electrostatic repulsion and release of the loaded DNA. The developed approach allowed the electrochemically‐triggered DNA release not only in the aqueous solutions, but also in human serum solution, thus giving promise for future biomedical applications.  相似文献   

9.
《Electroanalysis》2003,15(4):287-293
Homooxacalix[3]arene derivatives are effective ionophores for constructing serotonin‐selective membrane electrodes. An electrode based on one of the derivatives, tris(methoxyphenylpropyloxy)hexahomooxacalix[3]arene‐triethyl ether, with potassium tetrakis(p‐chlorophenyl)borate (20 mol% relative to the ionophore) as an ionic additive and bis(2‐ethylhexyl) sebacate as a solvent mediator in a poly(vinyl chloride) membrane matrix, displayed much better selectivity for serotonin than for various organic ammonium ions and inorganic cations. The electrode exhibited a near‐Nernstian response to serotonin in the concentration range of 2×10?4 to 1×10?2 M with a slope of 56.4 mV per concentration decade in physiological saline containing 150 mM NaCl and 10 mM Na2HPO4/NaH2PO4 (pH 7.4). The limit of the detection was 8×10?5 M. The selectivity pattern of this electrode was quite different from that of an electrode using calix[6]arene‐hexaacetic acid hexaethyl ester, a well‐known ionophore for primary organic ammonium ions, which did not induce an enhanced response to serotonin. The developed electrode was used for the active loading of serotonin in liposomes induced by transmembrane pH gradients.  相似文献   

10.
The construction, general performance characteristics and analytical application of a titanium dioxide–modified carbon paste electrode sensitive to hydrogen ions, based on incorporation of titanium dioxide in a carbon paste matrix, is described. The proposed electrochemical sensor exhibits a linear response in the pH range from 2 to 10, at 25 °C, with a sub‐Nernstian slope. The value of a slope is in a direct correlation with the electrode composition – the optimum content of a titanium dioxide in carbon paste is 30 %. Titanium dioxide‐modified carbon paste electrode shows fast response time and reproducibility, confirmed by different compounds determination in both, individual and complex material, namely, in synthetic and real samples. Besides, the electrode shows high selectivity in the presence of the alkali and the alkaline earth ions as Na+, K+, Ca2+ or Mg2+. The standard deviation of the investigated acids (acetic, oxalic, 5‐sulfosalicylic, p‐toluensulfonic acid, and amino acid‐glycine) and bases (N,N′‐diphenylguanidine and collidine) is less than 1.3 %. The obtained data are compared with those obtained by using a conventional glass pH‐electrode under the same experimental conditions and indicate a high correlation between them.  相似文献   

11.
《Electroanalysis》2017,29(6):1543-1553
A graphene‐functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4‐carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer‐modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4‐carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye‐labeled insulin (insulin‐FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9–10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of −1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin‐FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC‐labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene‐functionalized carbon fiber electrode demonstrated significant advantages in the signal‐stimulated insulin release comparing with the carbon fiber electrode without the graphene species.  相似文献   

12.
This study reports a remarkably facile method to synthesize novel ionogels with imidazolium cycle crosslinks based on polyamidoamine (PAMAM) dendrimers via one‐pot, modified Debus–Radziszewski reaction in ionic liquid 1‐ethyl‐3‐methylimidazolium acetate ([EMIM][OAc]). High room temperature ionic conductivity (up to 6.8 mS cm−1) is achieved, and more remarkably, it can still exceed 1 mS cm−1 when the dendrimer content reached 70% because PAMAM dendrimers are completely amorphous with many cavities and the newly formed imidazolium crosslinks contains ions. The elastic modulus of these ionogels can exceed 106 Pa due to the newly‐formed rigid imidazolium crosslinks. Crucially, these ionogels are robust gels even at temperatures up to 160 °C. Such novel ionogels with high ionic conductivity, tunable modulus, and flexibility are desirable for use in high‐temperature flexible electrochemical devices.  相似文献   

13.
A dicationic imidazolium ionic liquid modified silica stationary phase was prepared and evaluated by reversed‐phase/anion‐exchange mixed‐mode chromatography. Model compounds (polycyclic aromatic hydrocarbons and anilines) were separated well on the column by reversed‐phase chromatography; inorganic anions (bromate, bromide, nitrate, iodide, and thiocyanate), and organic anions (p‐aminobenzoic acid, p‐anilinesulfonic acid, sodium benzoate, pathalic acid, and salicylic acid) were also separated individually by anion‐exchange chromatography. Based on the multiple sites of the stationary phase, the column could separate 14 solutes containing the above series of analytes in one run. The dicationic imidazolium ionic liquid modified silica can interact with hydrophobic analytes by the hydrophobic C6 chain; it can enhance selectivity to aromatic compounds by imidazolium groups; and it also provided anion‐exchange and electrostatic interactions with ionic solutes. Compared with a monocationic ionic liquid functionalized stationary phase, the new stationary phase represented enhanced selectivity owing to more interaction sites.  相似文献   

14.
Crystals of the title π‐complex, [Cu4Cl6(C8H11N2)2]n, were obtained by means of alternating‐current electrochemical synthesis. The structure consists of infinite copper–chlorine chains to which 1‐allyl‐3‐amino­pyridinium moieties are attached via a η2 Cu—(C=C) interaction. The two independent Cu atoms have distinct coordination environments. One is three‐coordinate, surrounded by two chloro ligands and the olefinic bond, whereas the second copper center is surrounded by a tetrahedral arrangement of four Cl atoms. The lower basicity of 3‐amino­pyridine as compared with 2‐ and 4‐amino­pyridine lowers the capacity of the organic ligand for donating to N—H⋯Cl hydrogen bonds and results in the formation of a large inorganic fragment.  相似文献   

15.
《Electroanalysis》2003,15(14):1212-1218
A selective and sensitive polymer‐modified electrode was developed for β‐lactam antibiotics (cefaclor, amoxycillin and ampicillin) present in formulated and blood plasma samples for the quantitative analysis in aqueous environment. The detection was made using an ion‐exchange voltammetric technique, in differential pulse mode, on poly(N‐chloranil N,N,N′,N′‐tetramethylethylene diammonium dichloride)‐modified hanging mercury drop electrode of a three‐electrode system (PAR Model 303A) attached with a Polarographic Analyzer/Stripping Voltammeter (PAR Model 264A). Antibiotics, which are electroinactive compounds, were essentially converted to their electroactive oxazolone analogues through acid treatment under drastic conditions (0.1 mol L?1 HCl, ~85 °C, 2 h). These analytes in the form of their respective oxazolones were indirectly analyzed by oxazolone entrapment in the polymeric film through ion‐exchange process at modified electrode surface (accumulation potential ?0.20 V (vs. Ag/AgCl), accumulation time 120 s, pH 7.4, KH2PO4‐NaOH buffer (ionic strength 0.1 mol L?1), scan rate 10 mV s?1, pulse amplitude 25 mV). The limit of detection of cefaclor‐derived oxazolone was found to be 2.12 nmol L?1 (0.82 ppb, S/N 3, RSD 3.21%) in terms of cefaclor (a representative β‐lactam) concentration.  相似文献   

16.
《Electroanalysis》2005,17(23):2147-2155
A laccase biosensor, in which the enzyme was immobilized on N‐succinimidyl‐3‐thiopropionate (NSTP)‐modified gold electrodes, is reported. Two different approaches for the preparation of N‐succinimidyl‐terminated monolayers were evaluated: a) activation of a preformed 3‐mercaptopropionic acid (MPA) SAM by reaction with 1‐(3‐dimethylaminopropyl)‐ 3‐ethylcarbodiimide (EDC) and N‐hydroxysulfosuccinimide (NHS); b) assembling of dithiobisuccinimidyl propionate (DTSP). NSTP‐modified electrodes were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Biosensors prepared by covalent binding of the enzyme and by cross‐linking with glutaraldehyde atop NSTP‐modified electrodes were compared in terms of sensitivity and operational range for caffeic acid. A much better analytical performance was found using the latter approach. Variables affecting the amperometric detection (enzyme loading, pH and applied potential) were optimized. The operational stability and characteristics of functioning of the laccase biosensor in terms of repeatability of the amperometric measurements, reproducibility with different biosensors and useful lifetime, were evaluated. The kinetic parameters of the enzyme reactions and the analytical characteristics of the corresponding calibration plots were calculated for eight phenolic compounds. Limits of detection of 0.07 μM, 0.05 μM and 0.09 μM were obtained for caffeic acid, catechol and 3,4‐dihydroxyphenylacetic acid (DOPAC), respectively. The practical usefulness of the developed biosensor was evaluated by estimating the “pool” of phenolic compounds in olive oil mill wastewaters (OMW).  相似文献   

17.
A glassy carbon electrode was modified with an electropolymerized film of 1‐naphthylamine in aqueous solution. The electrocatalytic properties of this modified electrode (ME) were investigated using ascorbic acid (AA) as probe molecule. The electrochemical behavior of AA in buffer solution was examined by voltammetry and amperometry. The results showed that the ME exhibited good electrocatalytic activity towards the oxidation of AA, as a consequence, it can be used as amperometric sensor of this analyte in a flow injection system with good sensitivity. Calibration curves were linear over the concentration range 0.05–1.50 mM with a phosphate buffer solution pH 3 as the carrier, the detection limit was 1 ppm (S/N=3). The methods were applied to the determination of AA in beverages and pharmaceutical products. A good correlation with a reference method was attained.  相似文献   

18.
Gold electrodes were modified with submonolayers of 3‐mercaptopropionic acid and further reacted with poly(amidoamine) (PAMAM) dendrimers to obtain thin films. The high affinity of PAMAM dendrimer for nano‐Au with its amine groups was used to realize the role of nano‐Au as an intermediator to immobilize the enzyme of tyrosinase. The characterization of the modified electrode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and atomic force microscopy (AFM). Tyrosinase can catalyze the oxidation of catechol to o‐benzoquinone. When penicillamine was added to the solution, it reacted with o‐benzoquinone to form the corresponding thioquinone derivatives, which resulted in decrease of the reduction current of o‐benzoquinone. Based on this, a new electrochemical sensor for determination of penicillamine has been developed.  相似文献   

19.
Seven 2,4,6‐trisubstituted pyridine derivatives with N,N‐diethylaniline substituents at the 4‐position were synthesized, and their spectroscopic properties in the absence and presence of acid were studied. The spectral effects of protonation, molar absorptivities, pKa values, and the structural origins of the observed spectral behavior were ascertained. The pyridine nitrogen was found to be more basic than the diethylamino nitrogen atom. Protonation of the pyridine ring nitrogen is associated with the appearance of a red‐shifted intramolecular charge transfer peak in the UV‐visible spectra. Favorable color indicating properties result from electron‐donating substitution at the 2 and 6 positions of pyridine, which provide a greater absorptivity of the red‐shifted peak associated with protonation of the pyridine nitrogen. These findings will assist in the design and optimization of these compounds for ion‐indicating and pH‐sensing applications.  相似文献   

20.
The title complex, poly[bis(μ6‐pyridine‐2,6‐dicarboxylato N‐oxide)nickel(II)disilver(I)], [Ag2Ni(C7H3NO5)2]n or [Ag2Ni(pydco)2]n (H2pydco = pyridine‐2,6‐dicarboxylic acid N‐oxide), has a two‐dimensional sheet structure. The two carboxylate groups adopt two coordination modes. The NiII ion displays a distorted octahedral geometry, bonded to two carboxylate O atoms of two different pydco ligands and four O donors from another two ligands, i.e. two carboxylate O atoms and two N‐oxide O atoms. The AgI ion adopts a tetrahedral coordination, linked by three O atoms of three different carboxylate groups and an N‐oxide O atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号