首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study integrates two types of catalysis, namely, organometallic catalysis and organocatalysis in one reaction pot. In this process, the product of the first catalytic cycle acts as catalytic component for next catalytic cycle. The abnormal N‐heterocyclic carbene–copper‐based organometallic catalyst acts as an efficient catalyst for a click reaction to provide triazole, which, in turn, acts as an efficient organocatalyst for different organic transformations, for example, aza‐Michael addition and multicomponent reactions, in a consecutive fashion in the same reaction pot.  相似文献   

2.
Substrate selectivity is an important output function for the validation of different enzyme models, catalytic cavity compounds, and reaction mechanisms as demonstrated in this review. In contrast to stereo‐, regio‐, and chemoselective catalysis, the field of substrate‐selective catalysis is under‐researched and has to date generated only a few, but important, industrial applications. This review points out the broad spectrum of different reaction types that have been investigated in substrate‐selective catalysis. The present review is the first one covering substrate‐selective catalysis and deals with reactions in which the substrates involved have the same reacting functionality and the catalysts is used in catalytic or in stoichiometric amounts. The review covers real substrate‐selective catalysis, thus only including cases in which substrate‐selective catalysis has been observed in competition between substrates.  相似文献   

3.
The potential of homogeneous oxidation catalysis employing bromine has remained largely unexplored. We herein show that the combination of a tetraalkylammonium bromide and meta‐chloroperbenzoic acid offers a unique catalyst system for the convenient and selective oxidation of saturated C(sp3)−H bonds upon photochemical initiation with day light. This approach enables remote, intramolecular, position‐selective C−H amination as demonstrated for 20 different examples. For the first time, an N‐halogenated intermediate was isolated as the active catalyst state in a catalytic Hofmann–Löffler reaction. In addition, an expeditious one‐pot synthesis of N‐sulfonyl oxaziridines from N‐sulfonamides was developed and exemplified for 15 transformations. These pioneering examples provide a change in paradigm for molecular catalysis with bromine.  相似文献   

4.
Dinuclear gold complexes have the ability to interact with one or more substrates in a dual‐activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold‐based catalytic system by site‐isolation of mononuclear gold complexes by selective encapsulation. The typical dual‐activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.  相似文献   

5.
Taking advantage of computational chemistry, the best diamine for the synthesis of a multi‐dentate ligand from the reaction with 3‐(trimethoxysilyl) propylisocyanate (TEPI) was selected. Actually, predictive Density Functional Theory (DFT) calculations provided the right diamino chain, i.e. ethylenediamine, capable to sequester a palladium atom, together with the relatively polar solvent toluene, and then undergo the experiments as a selective catalytic agent. The ligand was then prepared and applied for the decoration of the halloysite (Hal) outer surface to furnish an efficient support for the immobilization of Pd nanoparticles. The resulting catalyst exhibited high catalytic activity for hydrogenation of nitroarenes. Moreover, it showed high selectivity towards nitro functional group. The study of the catalyst recyclability confirmed that the catalyst could be recycled for several reaction runs with only slight loss of the catalytic activity and Pd leaching. Hot filtration test also proved the heterogeneous nature of the catalysis.  相似文献   

6.
A relay formalism is proposed herein for categorizing the interplay among reactants, target product, and catalytic center in transition‐metal catalysis, an important factor that can dictate overall catalysis viability and efficiency. In this formalism, transition‐metal catalysis can proceed by dissociative relay, associative covalent relay, and associative dative relay modes. An intriguing associative covalent relay process operates in rhodium(III)‐catalyzed oxadiazolone‐directed alkenyl C−H coupling with alkynes and allows efficient access to primary pyridinylamines. Although the primary pyridinylamine synthesis mechanism is posteriori rationalized, the relay formalism formulated herein can provide an important mechanistic conceptual framework for future catalyst design and reaction development.  相似文献   

7.
Control over the local chemical environment of a molecule can be achieved by encapsulation in supramolecular host systems. In supramolecular catalysis, this control is used to gain advantages over classical homogeneous catalysis in bulk solution. Two of the main advantages concern influencing reactions in terms of substrate and product selectivity. Due to size and/or shape recognition, substrate selective conversion can be realized. Additionally, noncovalent interactions with the host environment facilitate alternative reaction pathways and can yield unusual products. This Concept article discusses and highlights literature examples utilizing self‐assembled molecular capsules to achieve catalytic transformations displaying a high degree of substrate and/or product selectivity. Furthermore, the advantage of supramolecular hosts in multicatalyst tandem reactions is covered.  相似文献   

8.
The area of catalysis of radical reactions has recently flourished. Various reaction conditions have been discovered and explained in terms of catalytic cycles. These cycles rarely stand alone as unique paths from substrates to products. Instead, most radical reactions have innate chains which form products without any catalyst. How do we know if a species added in “catalytic amounts” is a catalyst, an initiator, or something else? Herein we critically address both catalyst‐free and catalytic radical reactions through the lens of radical chemistry. Basic principles of kinetics and thermodynamics are used to address problems of initiation, propagation, and inhibition of radical chains. The catalysis of radical reactions differs from other areas of catalysis. Whereas efficient innate chain reactions are difficult to catalyze because individual steps are fast, both inefficient chain processes and non‐chain processes afford diverse opportunities for catalysis, as illustrated with selected examples.  相似文献   

9.
The alkylation of amines by alcohols is a broadly applicable, sustainable, and selective method for the synthesis of alkyl amines, which are important bulk and fine chemicals, pharmaceuticals, and agrochemicals. We show that Cr complexes can catalyze this C?N bond formation reaction. We synthesized and isolated 35 examples of alkylated amines, including 13 previously undisclosed products, and the use of amino alcohols as alkylating agents was demonstrated. The catalyst tolerates numerous functional groups, including hydrogenation‐sensitive examples. Compared to many other alcohol‐based amine alkylation methods, where a stoichiometric amount of base is required, our Cr‐based catalyst system gives yields higher than 90 % for various alkyl amines with a catalytic amount of base. Our study indicates that Cr complexes can catalyze borrowing hydrogen or hydrogen autotransfer reactions and could thus be an alternative to Fe, Co, and Mn, or noble metals in (de)hydrogenation catalysis.  相似文献   

10.
Quaternary stereocenters are found in numerous bioactive molecules. The Tsuji–Trost reaction has proven to be a powerful C?C bond forming process, and, at least in principle, should be well suited to access quaternary stereocenters via the α‐allylation of ketones. However, while indirect approaches are known, the direct, catalytic asymmetric α‐allylation of branched ketones has been elusive until today. By combining “enol catalysis” with the use of CO2 as a formal catalyst for asymmetric catalysis, we have now developed a solution to this problem: we report a direct, highly enantioselective and highly atom‐economic Tsuji–Trost allylation of branched ketones with allylic alcohol. Our reaction delivers products bearing quaternary stereocenters with high enantioselectivity and water as the sole by‐product. We expect our methodology to be of utility in asymmetric catalysis and inspire the design of other highly atom‐economic transformations.  相似文献   

11.
Reaction of the fluoride ion with secondary alkyl halides leads to 90% of elimination reaction and only 10% of nucleophilic substitution in dipolar aprotic solvents. Adding water to the organic phase, the SN2 yield increases in the cost of decreased reactivity. Using ab initio calculations, we have shown that it is possible to increase the reaction rate and the selectivity toward the SN2 process through supramolecular organocatalysis. The catalytic concept is based on selective solvation of the transition state through two hydrogen bonds provided by the 1,4-benzenedimethanol. The two hydrogen bonds between the catalyst and the SN2 transition state favor this pathway while just one strong hydrogen bond between the catalyst and the fluoride ion leads to a lower stabilization of the nucleophile, resulting in a higher reaction rate. Our calculations predict that the substitution product increases to 40% yield because of the selective catalysis provided by the 1,4-benzenedimethanol.  相似文献   

12.
We report the first tunable bifunctional surface of silica–alumina‐supported tertiary amines (SA–NEt2) active for catalytic 1,4‐addition reactions of nitroalkanes and thiols to electron‐deficient alkenes. The 1,4‐addition reaction of nitroalkanes to electron‐deficient alkenes is one of the most useful carbon–carbon bond‐forming reactions and applicable toward a wide range of organic syntheses. The reaction between nitroethane and methyl vinyl ketone scarcely proceeded with either SA or homogeneous amines, and a mixture of SA and amines showed very low catalytic activity. In addition, undesirable side reactions occurred in the case of a strong base like sodium ethoxide employed as a catalytic reagent. Only the present SA‐supported amine (SA–NEt2) catalyst enabled selective formation of a double‐alkylated product without promotions of side reactions such as an intramolecular cyclization reaction. The heterogeneous SA–NEt2 catalyst was easily recovered from the reaction mixture by simple filtration and reusable with retention of its catalytic activity and selectivity. Furthermore, the SA–NEt2 catalyst system was applicable to the addition reaction of other nitroalkanes and thiols to various electron‐deficient alkenes. The solid‐state magic‐angle spinning (MAS) NMR spectroscopic analyses, including variable‐contact‐time 13C cross‐polarization (CP)/MAS NMR spectroscopy, revealed that acid–base interactions between surface acid sites and immobilized amines can be controlled by pretreatment of SA at different temperatures. The catalytic activities for these addition reactions were strongly affected by the surface acid–base interactions.  相似文献   

13.

The generally accepted mechanism of the Suzuki—Miyaura reaction suggests a sequential activation of the substrate (aryl halide) and the reagent (arylboronic acid) by a palladium catalyst with the formation of unsymmetric biaryl as a result of a single turnover of the catalytic cycle, i.e., it is linear from the kinetic point of view. At the same time, the use of an unconventional kinetic approach based on the analysis of the differential selectivity of the reaction, rather than the regularities of catalytic activity, indicates the inadequacy of the linear mechanism, that is consistent with the hypothesis of a nonlinear (the so-called cooperative) mechanism of catalysis, in which the product is formed as a result of the substrate and reagent activation by two different palladium-containing intermediates in two parallel catalytic cycles. The experimentally observed low kinetic orders of the Suzuki—Miyaura reaction with respect to the concentration of the palladium catalyst precursor under the ligand-free conditions of catalysis are also consistent with the cooperative mechanism and can be due to the changes in the relative amount of the catalyst in two parallel catalytic cycles and/or to the process of catalyst deactivation.

  相似文献   

14.
Composite nanomaterials usually possess synergetic properties resulting from the respective components and can be used for a wide range of applications. In this work, a Pd nanocubes@ZIF‐8 composite material has been rationally fabricated by encapsulation of the Pd nanocubes in ZIF‐8, a common metal–organic framework (MOF). This composite was used for the efficient and selective catalytic hydrogenation of olefins at room temperature under 1 atm H2 and light irradiation, and benefits from plasmonic photothermal effects of the Pd nanocube cores while the ZIF‐8 shell plays multiple roles; it accelerates the reaction by H2 enrichment, acts as a “molecular sieve” for olefins with specific sizes, and stabilizes the Pd cores. Remarkably, the catalytic efficiency of a reaction under 60 mW cm?2 full‐spectrum or 100 mW cm?2 visible‐light irradiation at room temperature turned out to be comparable to that of a process driven by heating at 50 °C. Furthermore, the catalyst remained stable and could be easily recycled. To the best of our knowledge, this work represents the first combination of the photothermal effects of metal nanocrystals with the favorable properties of MOFs for efficient and selective catalysis.  相似文献   

15.
In this review, we comprehensively describe catalyzed multicomponent reactions (MCRs) and the multiple roles of catalysis combined with key parameters to perform these transformations. Besides improving yields and shortening reaction times, catalysis is vital to achieving greener protocols and to furthering the MCR field of research. Considering that MCRs typically have two or more possible reaction pathways to explain the transformation, catalysis is essential for selecting a reaction route and avoiding byproduct formation. Key parameters, such as temperature, catalyst amounts and reagent quantities, were analyzed. Solvent effects, which are likely the most neglected topic in MCRs, as well as their combined roles with catalysis, are critically discussed. Stereocontrolled MCRs, rarely observed without the presence of a catalytic system, are also presented and discussed in this review. Perspectives on the use of catalytic systems for improved and greener MCRs are finally presented.  相似文献   

16.
The identification of catalytically active sites (CASs) in heterogeneous catalysis is of vital importance to design and develop improved catalysts, but remains a great challenge. The CASs have been identified in the low‐temperature selective catalytic reduction of nitrogen oxides by ammonia (SCR) over a hollandite manganese oxide (HMO) catalyst with a rod‐shaped morphology and one‐dimensional tunnels. Electron microscopy and synchrotron X‐ray diffraction determine the surface and crystal structures of the one‐dimensional HMO rods closed by {100} side facets and {001} top facets. A combination of X‐ray absorption spectra, molecular probes with potassium and nitric oxide, and catalytic tests reveals that the CASs are located on the {100} side facets of the HMO rods rather than on the top facets or in the tunnels, and hence semi‐tunnel structural motifs on the {100} facets are evidenced to be the CASs of the SCR reaction. This work paves the way to further investigate the intrinsic mechanisms of SCR reactions.  相似文献   

17.
Dielectric and acid-base bifunctional effects are elucidated in heterogeneous aminocatalysis using a synthetic strategy based on bulk silica imprinting. Acid-base cooperativity between silanols and amines yields a bifunctional catalyst for the Henry reaction that forms alpha,beta-unsaturated product via quasi-equilibrated iminium intermediate. Solid-state UV/vis spectroscopy of catalyst materials treated with salicylaldehyde demonstrates zwitterionic iminium ion to be the thermodynamically preferred product in the bifunctional catalyst. This product is observed to a much lesser extent relative to its neutral imine tautomer in primary amine catalysts having outer-sphere silanols partially replaced by aprotic functional groups. One of these primary amine catalysts, consisting of a polar outer-sphere environment derived from cyano-terminated capping groups, has activity comparable to that of the bifunctional catalyst in the Henry reaction, but instead forms the beta-nitro alcohol product in high selectivity (approximately 99%). This appears to be the first observation of selective alcohol formation in primary amine catalysis of the Henry reaction. A primary amine catalyst with a methyl-terminated outer-sphere also produces alcohol, albeit at a rate that is 50-fold slower than the cyano-terminated catalyst, demonstrating that outer-sphere dielectric constant affects catalyst activity. We further investigate the importance of organizational effects in enabling acid-base cooperativity within the context of bifunctional catalysis, and the unique role of the solid surface as a macroscopic ligand to impose this cooperativity. Our results unequivocally demonstrate that reaction mechanism and product selectivity in heterogeneous aminocatalysis are critically dependent on the outer-sphere environment.  相似文献   

18.
Chemical doping has been demonstrated to be an effective way to realize new functions of graphene as metal‐free catalyst in energy‐related electrochemical reactions. Although efficient catalysis for the oxygen reduction reaction (ORR) has been achieved with doped graphene, its performance in the hydrogen evolution reaction (HER) is rather poor. In this study we report that nitrogen and sulfur co‐doping leads to high catalytic activity of nanoporous graphene in HER at low operating potential, comparable to the best Pt‐free HER catalyst, 2D MoS2. The interplay between the chemical dopants and geometric lattice defects of the nanoporous graphene plays the fundamental role in the superior HER catalysis.  相似文献   

19.
王克  汪啸  宋术岩 《应用化学》2022,39(4):540-558
甲烷合成甲醇的方法包括间接法和直接催化氧化(DMTM)法,但是间接法对设备要求高,且甲烷转化率与甲醇选择性均不理想,DMTM法可通过一步反应高选择性制备甲醇,有巨大的应用潜力。对于甲烷DMTM法合成甲醇,均相催化体系通常需要特殊反应介质与贵金属催化剂相结合,虽然反应效率高,但对反应设备有腐蚀性,产物不易分离,应用前景差。液相-异相催化一般使用H_(2)O_(2)作为氧化剂,Au、Pd、Fe和Cu等金属元素作为催化剂主要活性组分,·OH是主要的氧化活性物,可在低温下实现甲烷的活化氧化。因此,异相催化体系是目前研究的主流。气相-异相催化主要使用O_(2)和N_(2)O为氧化剂,前者氧化性更强,后者对于产品选择性更好,此外,厌氧体系中H_(2)O也可直接作为氧供体,常用Cu、Fe、Rh等元素作为催化剂。沸石分子筛是使用最广泛的载体,金属氧化物、金属有机骨架化合物(MOFs)和石墨烯也均有涉及,多金属协同催化已经取得了很好的效果。本文主要总结与概述了热催化甲烷直接催化氧化制备甲醇的近年相关研究,并对今后的研究方向做出了展望。  相似文献   

20.
An environmentally benign and selective Baeyer-Villiger oxidation system is introduced. Palygorskite-supported Sn complexes were prepared by a simple procedure. Cyclic ketones and acyclic ketones were oxidized by hydrogen peroxide in a reaction catalyzed by palygorskite-supported Sn complexes, affording corresponding lactones or esters with selectivity for the product of 90-99%. The influence of the solvents, reaction temperature, the amount of catalyst used and the reaction time on the catalytic activity and product selectivity were investigated in detail. The catalyst is cheap, easy to be prepared in large scale and can be recycled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号