首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triazole fungicides are pesticides widely employed in the cultivation of fruits, vegetables and grains. However, their ability to change the steroid hormone biosynthesis may result in endocrine complications for mammals, as well as changes in cholesterol and triglyceride levels and hepatotoxicity. The analysis of the triazole fungicides in superficial waters is important in order to monitor the risk for the biota. However, the use of efficient extraction procedures has been necessary in order to concentrate these pesticides before the analysis. In-disk solid-phase extraction (SPE) can be highlighted as a potential pre-concentration technique, mainly because the possibility to extract the analytes from a large sample volume, increasing the method detectability. Carbon nanotubes (CNTs) have been often used as solid extraction phase due to their high sorption capacity, surface area and internal volume, as well as mechanical, chemical and thermal stability. In this paper, we proposed the preparation of a new SPE disk impregnated with CNTs for the extraction of triazole fungicides from environmental water samples. The disks were obtained by acid corrosion of a cellulose membrane followed by its impregnation with CNTs. The developed method was validated for the analysis of triadimenol, tebuconazole and epoxiconazole, according to international validation protocols. The limits of quantification obtained for triadimenol, tebuconazole and epoxiconazole were 0.1, 0.1 and 0.05 µg L?1, respectively. The linearity ranged from 0.05 to 10.00 µg L?1 for epoxiconazole and from 0.1 to 10.00 µg L?1 for triadimenol and tebuconazole, with correlation coefficients higher than 0.999 for all of them. The precisions, expressed as relative standard deviation, were lower than 12%. The accuracies were within ?12.07% to 17.7% (expressed as relative error).  相似文献   

2.
A new sorbent was successfully prepared by immobilizing creatine on activated carbon and then used for separation/preconcentration of trace Hg(II) prior to detection by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions including pH, sample flow rate and volume, eluting variables and tolerance limit of interfering ions were evaluated and established. At pH 1.0 and flow rate of 2.5?mL?min?1, Hg(II) was adsorbed quantitatively on the column, then quantitatively eluted by 2.0?mL 0.1?mol?L?1 nitric acid solution; other transition metal ions did not interfere with the determination of Hg(II). An enrichment factor of 100 was obtained for Hg(II). The maximum adsorption capacity was 49.5?mg?g?1. Under the optimal conditions, the value of the detection limit (3σ) was 0.06?ng?mL?1, and the relative standard deviation (RSD) calculated was lower than 3.0% (n?=?8). The methodology was validated by analyzing certified reference materials and successfully applied to the determination of trace Hg(II) in natural water samples with satisfactory results.  相似文献   

3.
A procedure for the determination of six derivatives of 2-hydroxybenzophenone, used as UV absorbers, in water samples is presented. Compounds were first concentrated using a solid-phase extraction (SPE) cartridge and then selectively determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using electrospray ionization (ESI). The effect of different parameters on the performance of concentration and determination steps is discussed. The highly polar and acidic 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) required the use of ammonium acetate as modifier during desorption of SPE cartridges and also to improve the performance of its separation in the LC column. Under optimized conditions, the proposed method provided limits of quantification from less than 1 to 32 ng L−1, depending on the compound and the type of water sample. Recoveries from the SPE step (83-105%) remained unaffected by the nature of the matrix; however, the efficiency of electrospray ionization was compound and sample dependant. Real sample analysis reflected the presence of three of the six investigated species (BP-4, 2-hydroxy-4-methoxybenzophenone, BP-3, and 2,4-dihydroxybenzophenone, BP-1) in the aquatic environment, particularly in raw wastewater samples. In this latter matrix, BP-4 was the compound presenting the highest concentrations; moreover, it was poorly removed in sewage treatment plants and consequently it also appeared in river water.  相似文献   

4.
Niu  Hongyun  Shi  Yali  Cai  Yaqi  Wei  Fusheng  Jiang  Guibin 《Mikrochimica acta》2009,164(3-4):431-438
Microchimica Acta - This study presents a new, easily made and practical solid-phase extraction disk, a single-walled carbon nanotubes (SWCNTs) disk. The properties of the disk were evaluated by...  相似文献   

5.
Thin-film microextraction(TFME),a new geometry for solid-phase microextraction,has become an attractive sample-preparation technique.Compared to other microextraction approaches,the sensitivity of this technique was enhanced without sacrificing the sampling time due to the high surface area-tovolume ratio together with the increase of extraction-phase volume.In this paper,a new TFME method based on poly(vinylidene fluoride) membrane was developed for the extraction of benzoylurea insecticides(diflubenzuron,triflumuron,hexaflumuron and teflubenzuron) from water samples followed by their determination with high performance liquid chromatography-diode array detection.Under the optimal conditions,good linearity was observed over the concentration range of 0.5-100.0 ng/mL with correlation coefficient greater than 0.9994.The limits of detection(S/N = 3) of the method for the target analytes were 0.1 ng/mL.Mean recoveries ranged from 87.7% to 103.9% with relative standard deviations lower than 6.5%.The results indicated that the developed TFME method is simple,efficient,and cost effective.  相似文献   

6.
Erdan Hu  Hefa Cheng 《Mikrochimica acta》2013,180(7-8):703-710
We have evaluated three methods for the extraction of atrazine and six of its degradation products from microporous mineral sorbents. Soxhlet extraction and ultrasonic extraction, which work well on soils and sediments, recover only <15 % of the atrazine from a dealuminated Y zeolite. Closed-vessel microwave-assisted extraction, in contrast, gives much better recoveries. This is attributed to the accelerated mass transfer at elevated temperatures and the displacement by the solvent forced into the mineral micropores under elevated pressures. Under the optimized conditions, the recovery of atrazine from the hydrophilic Y zeolites (Si/Al ratios <8) is almost quantitative, and ~77 % for the more hydrophobic ones. The extraction efficiencies for the degradation products of atrazine in the hydrophilic zeolites (74.1–100 %) are also higher than those in the hydrophobic ones (22.3–44.2 %). The extracted compounds were quantified by a combination of ultra-HPLC and tandem MS and resulted in detection limits between 0.04 and 1.41 mg kg?1 on a hydrophilic Y zeolite (Si/Al?=?2.55), and of 0.09–2.35 mg kg?1 on a hydrophobic zeolite (Si/Al?=?15). The method was applied to study the degradation of atrazine sorbed on dealuminated Y zeolites.   相似文献   

7.
In this work, a reliable and selective procedure for the determination of thirteen fungicides in red and white wine samples is proposed. Solid-phase extraction (SPE) and liquid chromatography (LC) tandem mass spectrometry (MS/MS), based on a hybrid quadrupole time-of-flight (QTOF) system, were used as sample preparation and determination techniques, respectively. Extraction and purification of target analytes was carried out simultaneously by using a reversed-phase Oasis HLB (200mg) SPE cartridge combined with acetonitrile as elution solvent. Fungicides were determined operating the electrospray source in the positive ionization mode, with MS/MS conditions adjusted to obtain at least two intense product ions per compound, or registering two transitions per species when a single product was noticed. High selective MS/MS chromatograms were extracted using a mass window of 20 ppms for each product ion. Considering external calibration as quantification technique, the overall recoveries (accuracy) of the procedure ranged between 81% and 114% for red and white wine samples (10-20 mL), spiked at different concentrations between 5 and 100 ng mL(-1). Relative standard deviations of the above data stayed below 12% and the limits of quantification (LOQs) of the method, calculated for 10 mL of wine, varied between 0.1 ng mL(-1) for cyprodinil (CYP) and 0.7 ng mL(-1) for myclobutanil (MYC). The optimized method was applied to seventeen commercial wines produced in Spain and obtained from local supermarkets. Nine fungicides were determined, at levels above the LOQs of the method, in the above samples. The maximum concentrations and the highest occurrence frequencies corresponded to metalaxyl (MET) and iprovalicarb (IPR).  相似文献   

8.
A simple, rapid method for isolating herbicides from well water was developed using disposable octadecyl (C18) solid-phase extraction columns. Deuterium-labeled internal standards were used to compensate for any losses that may have occurred during sample preparation owing to matrix effects. Detection by capillary gas chromatography-mass spectrometry in the selected ion monitoring mode minimized the frequency of false-positive results. The accuracy of the method was ± 5% at concentrations > 0.20μg l?1 for four of the five herbicides studied.  相似文献   

9.
We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were prepared from magnetite (Fe3O4) as the magnetic component, paracetamol as the template, methacrylic acid as a functional monomer, and 2-(methacrylamido) ethyl methacrylate as a cross-linker. The m-MIPs were then characterized by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction and vibrating sample magnetometry. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples. Following its elution from the column loaded with the m-MIPs with an acetonitrile-buffer (9:1) mixture, it was submitted to HPLC analysis. Paracetamol can be quantified by this method in the 1 μg L?1 to 300 μg L?1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.17 and 0.4 μg L?1. The preconcentration factor of the m-MIPs is 40. The HPLC method shows good precision (4.5 % at 50 μg L?1 levels) and recoveries (between 83 and 91 %) from spiked plasma samples. Figure
We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples  相似文献   

10.

We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were prepared from magnetite (Fe3O4) as the magnetic component, paracetamol as the template, methacrylic acid as a functional monomer, and 2-(methacrylamido) ethyl methacrylate as a cross-linker. The m-MIPs were then characterized by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction and vibrating sample magnetometry. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples. Following its elution from the column loaded with the m-MIPs with an acetonitrile-buffer (9:1) mixture, it was submitted to HPLC analysis. Paracetamol can be quantified by this method in the 1 μg L−1 to 300 μg L−1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.17 and 0.4 μg L−1. The preconcentration factor of the m-MIPs is 40. The HPLC method shows good precision (4.5 % at 50 μg L−1 levels) and recoveries (between 83 and 91 %) from spiked plasma samples.

We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples

  相似文献   

11.
A sensitive analytical method to concentrate and determine extensively used UV filters in cosmetic products at (ultra)trace levels in water samples is presented. The method is based on a sample treatment using dispersive solid-phase extraction (dSPE) with laboratory-made chemisorbed oleic acid-coated cobalt ferrite (CoFe(2)O(4)@oleic acid) magnetic nanoparticles (MNPs) as optimized sorbent for the target analytes. The variables involved in dSPE were studied and optimized in terms of sensitivity, and the optimum conditions were: mass of sorbent, 100mg; donor phase volume, 75 mL; pH, 3; and sodium chloride concentration, 30% (w/v). After dSPE, the MNPs were eluted twice with 1.5 mL of hexane, and then the eluates were evaporated to dryness and reconstituted with 50 μL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) for the injection into the gas chromatography-mass spectrometry (GC-MS). Under the optimized experimental conditions the method provided good levels of repeatability with relative standard deviations below 16% (n=5, at 100 ng L(-1) level). Limit of detection values ranged between 0.2 and 6.0 ng L(-1), due to the high enrichment factors achieved (i.e., 453-748). Finally, the proposed method was applied to the analysis of water samples of different origin (tap, river and sea). Recovery values showed that the matrices under consideration do not significantly affect the extraction process.  相似文献   

12.
Hordenine is an active compound found in several foods, herbs and beer. In this work, a novel sorbent was fabricated for selective solid‐phase extraction (SPE) of hordenine in biological samples. The organic polymer sorbent was synthesized in one step in the plastic barrel of a syringe by a pre‐polymerization solution consisting of methacrylic acid (MAA), 4‐vinylphenylboronic acid (VB) and ethylene glycol dimethacrylate (EGDMA). The conditions for preparation were optimized to generate a poly(MAA‐VB‐EGMDA) monolith with good permeability. The monolith exhibited good enrichment efficiency towards hordenine. By using tyramine as the internal standard, a poly(MAA‐VB‐EGMDA)‐based SPE‐HPLC method was established for analysis of hordenine. Conditions for SPE, including volume of eluting solvent, pH of sample solution, sampling rate and sample volume, were optimized. The proposed SPE‐HPLC method presented good linearity (R2 = 0.9992) within 10–2000 ng/mL and the detection limits was 3 ng/mL, which is significantly more sensitive than reported methods. The method was also applied in plasma and urine samples; good capability of removing matrices was observed, while hordenine in low content was well extracted and enriched. The recoveries were from 90.6 to 94.7% and from 89.3 to 91.5% for the spiked plasma and urine samples, respectively, with the relative standard deviations <4.7%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Pan  Feng  Mao  Jie  Chen  Qiang  Wang  Pengbo 《Mikrochimica acta》2013,180(15):1471-1477

Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.

  相似文献   

14.
Feng Pan  Jie Mao  Qiang Chen  Pengbo Wang 《Mikrochimica acta》2013,180(15-16):1471-1477
Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.
Figure
Functional magnetic Fe3O4@SiO2 core shell nanoparticles were utilized for solid phase extraction of Hg(II) from aqueous solutions, and the extracted Hg(II) was determined by a rhodamine-based fluorescent probe RP with satisfying results.  相似文献   

15.
Implementation of a mixed-mode solid-phase extraction is discussed as a promising approach for matrix clean-up in multiresidue/multimatrix methods. Sorbents characterized by different mechanisms of sorption such as reversed-phase (graphitized carbon), weak anion exchange (primary-secondary amine) and strong anion exchange (quaternary amine) were studied for their effectiveness in the removal of the matrix co-extractives in grains, fruits and vegetables for trace pesticide residues analysis. The pesticide residues were determined by gas chromatography with electron capture and mass spectrometric detection. Recoveries data of 25 pesticides from different groups at 0.01 mg/kg level ranged between 73 and 117% and with standard deviation below 15%. The limits of quantification were below or at 0.01 mg/kg.  相似文献   

16.
In this work, a novel method for the fabrication of magnetic carbon nanotubes based on 'aggregation wrap' was proposed. When carbon nanotubes and magnetic nanoparticles were vortically mixed in a solvent, the magnetic nanoparticles were wrapped into the carbon nanotube bundles that formed during the aggregation process, leading to the formation of magnetic carbon nanotubes. Thus, the resultant material can be separated from the solvent rapidly and conveniently by a magnet. Our investigation demonstrated that the 'aggregation wrap' mechanism for the preparation of magnetic composite is also applicable to other self-aggregated micro/nanomaterials, including graphene, graphite, C(60), etc. To testify the feasibility of the magnetic composites in sample preparation, the resultant magnetic carbon nanotubes were applied as sorbents for magnetic solid-phase extraction (MSPE) of estrogens in milk samples. Under optimized conditions, a rapid, convenient and efficient method for the determination of estrogens in milk samples was established by the combination of MSPE with high-performance liquid chromatography with fluorescence detector. The linearity range of the proposed method was 5-2000 μg/L with correlation coefficients (R) of 0.9983-0.9994. The limit of detection (LOD) for three estrogens ranged from 1.21 to 2.35 μg/L. The intra- and inter-day relative standard deviations (RSDs) were <9.3%. The reproducibility of the MSPE with different batches of magnetic carbon nanotubes was acceptable with RSD values <3.6%.  相似文献   

17.
A chelating matrix prepared by immobilising folic acid on silica gel-bound amine phase was used as a new solid-phase extractant. This sorbent has been developed only for preconcentration of trace Pb(II) prior to determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions were investigated by batch and column procedures. The optimum pH value for the separation of Pb(II) on the new sorbent was 4.0. The adsorbed Pb(II) was quantitatively eluted by 2.0?cm3 of 0.5?mol?dm?3 of HCl. Common coexisting ions did not interfere with the separation and determination of Pb(II). The maximum static adsorption capacity of the sorbent under optimum conditions was found to be 69.23?mg?g?1 for Pb(II). The detection limit of the method defined by International Union of Pure and Applied Chemistry was 0.28?ng?cm?3. The relative standard deviation (RSD) of the method was lower than 2.0% (n?=?8). The developed method has been validated by analysing certified reference materials and successfully applied to the determination of Pb(II) in water samples with satisfactory results.  相似文献   

18.
Nanosized titanium dioxide immobilized on silica gel was synthesized and used as fixed-bed phase for V(V) pre-concentration, followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. Three different sorbents were prepared by sol–gel method starting from a mixture of titanium isopropoxide, 2-propanol and water, and characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and BET analysis. V(V), the most stable and toxic oxidation state of the element, present in water and beverages samples, was selectively sorbed, pre-concentrated, quantitatively eluted by 0.1 M HCl and analyzed by ICP-OES. The effectiveness of the procedure was first assessed on tap water enriched with 1 μg L?1 of V(V) obtaining recoveries up to 92% (n = 4). The pre-concentration step was then optimized for complex matrices such as tea infusions and red and white wines. The reliability of the procedure was assessed on the same beverages samples spiked with 20–250 μg L?1. Quantitative recoveries (82–95%, n = 4) were assured avoiding any sample pre-treatment, generally essential in such complex matrices, obtaining good precision (RSD < 12%, n = 3). The method was then applied to the determination of V(V) in commercial tea infusions and wines.  相似文献   

19.
Fu S  Ding L  Zhu S  Jiao Y  Gong Q  Chen J  Wang L 《色谱》2011,29(8):737-742
建立了磁性多壁碳纳米管(MWCNTs)固相萃取结合气相色谱-质谱检测水样中13种邻苯二甲酸酯类化合物(PAEs)的方法。优化了萃取时间、水样pH值、解吸溶剂的种类和用量、解吸时间等影响萃取效率的主要条件。最终确定萃取时间为10 min,水样pH 5~7,解吸溶剂为2 mL丙酮,解吸时间为5 min。在优化的条件下,各组分的萃取回收率为89.7%~100.5%。方法具有较高的灵敏度,检出限(信噪比(S/N)为3)为0.08~0.47 μg/L。3种实际样品的加标回收率为84.5%~107.5%,相对标准偏差为1.9%~12.8%。该方法操作简便、省时,准确、灵敏、环保,可用于水样中PAEs的检测,并成功地应用于自来水、瓶装饮用水和湖水样品的分析,13种PAEs均未检出。  相似文献   

20.
Environmental samples such as soil solutions contain inorganic ions such as NH4(+), K(+), Na(+), NO3(-), and PO4(3-) in high concentrations, which must be removed prior to capillary electrophoresis-mass spectrometry analysis to obtain accurate results. However, the separation of these inorganic ions from ionic metabolites, which are the target compounds in capillary electrophoresis-mass spectrometry analysis, is difficult because the physicochemical properties of the inorganic ions are similar to those of the ionic metabolites. In this study, we used various solid-phase extraction (SPE) columns for the purification of the samples containing inorganic ions in high concentrations. We found that cation-exchange SPE columns successfully filtered out the inorganic ions while retaining most of the organic compounds, which were easily collected with high recovery rates. In addition, 17 cationic metabolites in the soil solution were quantified by CE-MS analysis following the SPE purification process. The results suggest that our method can be used to analyze other environmental samples containing inorganic ions in high concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号