首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New nickel‐based complexes of 1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene (dpp‐bian) with BF4? counterion or halide co‐ligands were synthesized in THF and MeCN. The nickel(I) complexes were obtained by using two approaches: 1) electrochemical reduction of the corresponding nickel(II) precursors; and 2) a chemical comproportionation reaction. The structural features and redox properties of these complexes were investigated by using single‐crystal X‐ray diffraction (XRD), cyclic voltammetry (CV), and electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. The influence of temperature and solvent on the structure of the nickel(I) complexes was studied in detail, and an uncommon reversible solvent‐induced monomer/dimer transformation was observed. In the case of the fluoride complex, the unpaired electron was found to be localized on the dpp‐bian ligand, whereas all of the other nickel complexes contained neutral dpp‐bian moieties.  相似文献   

2.
采用阳极氧化法制备出高度有序的TiO2纳米管阵列作为基础电极,通过电沉积法将纳米镍颗粒负载在基础电极上,从而制备了纳米镍-二氧化钛纳米管(Ni/TiO2NTs)修饰电极。分别采用扫描电子显微镜和X射线衍射对Ni/TiO2NTs电极的形貌及组分进行了表征。将Ni/TiO2NTs电极用于对胰岛素的电化学测定。结果表明,在0.1 mol/L NaOH支持电解液中,胰岛素在Ni/TiO2NTs电极上有较好的电化学响应,胰岛素浓度在0.8~1.6μmol/L范围内,峰电流密度与其浓度呈良好的线性关系,检测限为0.28μmol/L,灵敏度为0.49×10-3 A/(μmol·L-1.cm-2)。  相似文献   

3.
Graphene and graphene oxides are materials of significant interest in electrochemical devices such as supercapacitors, batteries, fuel cells, and sensors. Graphene oxides and reduced graphenes are typically prepared by oxidizing graphite in strong mineral acid mixtures with chlorate (Staudenmaier, Hofmann) or permanganate (Hummers, Tour) oxidants. Herein, we reveal that graphene oxides pose inherent electrochemistry, that is, they can be oxidized or reduced at relatively mild potentials (within the range ±1 V) that are lower than typical battery potentials. This inherent electrochemistry of graphene differs dramatically from that of the used oxidants. Graphene oxides prepared using chlorate exhibit chemically irreversible reductions, whereas graphene oxides prepared through permanganate‐based methods exhibit very unusual inherent chemically reversible electrochemistry of oxygen‐containing groups. Insight into the electrochemical behaviour was obtained through cyclic voltammetry, chronoamperometry, and X‐ray photoelectron spectroscopy experiments. Our findings are of extreme importance for the electrochemistry community as they reveal that electrode materials undergo cyclic changes in charge/discharge cycles, which has strong implications for energy‐storage and sensing devices.  相似文献   

4.
Nickel‐cobalt oxide nano‐flakes materials are successfully synthesized by a facile chemical co‐precipitation method followed by a simple calcination process. The studies show that the as‐prepared nickel‐cobalt oxides with different Ni/Co ratio are composed of NiO and Co3O4 compounds. The Co0.56Ni0.44 oxide material, which exhibits a mesoporous structure with a narrow distribution of pore size from 2 to 7 nm, possesses markedly enhanced charge‐discharge properties at high current density compared with the pure NiO and pure Co3O4. The Co0.56Ni0.44 oxide electrode shows a specific capacitance value of 1227 F/g at 5 mA/cm2, which is nearly three times greater than that of the pure NiO electrode at the same current density.  相似文献   

5.
6.
Partially reduced graphite oxide was prepared from graphite oxide by using synthetic graphite as precursor. The reduction of graphite oxide with a layer distance of 0.57 nm resulted in a reduction of the layer distance depending on the degree of reduction. Simultaneously the amount of oxygen functionalities in the graphite oxide was reduced, which was corroborated by elemental analysis and EDX. The electrochemical activation of the partially reduced graphite oxide was investigated for tetraethylammonium tetrafluoroborate in acetonitrile and in propylene carbonate. The activation potential depends significantly on the degree of reduction, that is, on the graphene‐layer distance and on the solvent used. The activation potential decreased with increasing layer distance for both positive and negative activation. The resulting capacitance after activation was found to be affected by the layer distance, the oxygen functionalities and the used electrolyte. For a layer distance of 0.43 nm and with acetonitrile as the solvent, a differential capacitance of 220 Fg?1 was achieved for the discharge of the positive electrode near the open‐circuit potential and 195 Fg?1 in a symmetric full‐cell assembly.  相似文献   

7.
High‐surface‐area, guava‐leaf‐derived, heteroatom‐containing activated carbon (GHAC) materials were synthesized by means of a facile chemical activation method with KOH as activating agent and exploited as catalyst supports to disperse nickel oxide (NiO) nanocrystals (average size (2.0±0.1) nm) through a hydrothermal process. The textural and structural properties of these GHAC/NiO nanocomposites were characterized by various physicochemical techniques, namely, field‐emission SEM, high‐resolution TEM, elemental analysis, X‐ray diffraction, X‐ray photoelectron spectroscopy, thermogravimetric analysis, and Raman spectroscopy. The as‐synthesized GHAC/NiO nanocomposites were employed as binder‐free electrodes, which exhibited high specific capacitance (up to 461 F g?1 at a current density of 2.3 A g?1) and remarkable cycling stability, which may be attributed to the unique properties of GHAC and excellent electrochemical activity of the highly dispersed NiO nanocrystals.  相似文献   

8.
Nickel oxide nanosheets have been successfully synthesized by a facile ethylene glycol mediated hydrothermal method. The morphology and crystal structure of the nickel oxide nanosheets were characterized by X‐ray diffraction, field‐emission SEM, and TEM. When applied as electrode materials for lithium‐ion batteries and supercapacitors, nickel oxide nanosheets exhibited a high, reversible lithium storage capacity of 1193 mA h g?1 at a current density of 500 mA g?1, an enhanced rate capability, and good cycling stability. Nickel oxide nanosheets also demonstrated a superior specific capacitance of 999 F g?1 at a current density of 20 A g?1 in supercapacitors.  相似文献   

9.
Model structures of 1,3,5‐triarylbenzenes with a substituted benzene core linked to thienyl or 3,4‐ethylenedioxythienyl (EDOT) terminal groups are studied by electrochemical and in situ ESR/UV/Vis/NIR spectroelectrochemical techniques. Oxidative polymerization of the monomers results in C? C coupling of the thiophene moieties in the 5‐position, forming dimeric structures with bithiophene linkers as the first step. Both the doubly charged protonated dimer and the new dimer formed after proton release are studied in detail for 2,4,6‐tris[2‐(3,4‐ethylenedioxythienyl)]‐1‐methoxybenzene. Quite high stability of the doubly charged σ dimer formed on oxidation with unusual redox behavior at the electrode is observed. Density functional calculations of the molecular structure as well as spectroscopic and electronic properties of charged states in 1,3,5‐triarylbenzene derivatives in the monomeric, dimeric, and oligomeric form are presented. The complex spectroelectrochemical response of a thin solid film formed on the electrode surface upon potentiodynamic polymerization indicates the existence of different charge states of oligomeric structures within the solid matrix.  相似文献   

10.
Porous NiO nanosheets are successfully grown on nickel foam substrate through an in situ anodization by using molten KOH as the electrolyte. High‐purity NiO is directly obtained by this one‐step method without any subsequent treatment. The obtained NiO supported on nickel foam is used as a binder‐free electrode for a supercapacitor and its pseudocapacitive behavior has been investigated by cyclic voltammetry and galvanostatic charge–discharge tests in a 6 M aqueous solution of KOH. Electrochemical data demonstrates that this binder‐free electrode possesses ultrahigh capacitance (4.74 F cm?2 at 4 mA cm?2), excellent rate capability, and cycling stability. After 1000 cycles, the areal capacitance value is 9.4 % lower than the initial value and maintains 85.4 % of the maximum capacitance value.  相似文献   

11.
12.
Along with amide bond formation, Suzuki cross‐coupling, and reductive amination, the Buchwald–Hartwig–Ullmann‐type amination of aryl halides stands as one of the most employed reactions in modern medicinal chemistry. The work herein demonstrates the potential of utilizing electrochemistry to provide a complementary avenue to access such critical bonds using an inexpensive nickel catalyst under mild reaction conditions. Of note is the scalability, functional‐group tolerance, rapid rate, and the ability to employ a variety of aryl donors (Ar−Cl, Ar−Br, Ar−I, Ar−OTf), amine types (primary and secondary), and even alternative X−H donors (alcohols and amides).  相似文献   

13.
The behavior of proteins and polypeptides at electrified aqueous–organic interfaces is of benefit in label‐free detection strategies. In this work, rat amylin (or islet amyloid polypeptide) was studied at the interface formed between aqueous liquid and gelled organic phases. Amylin is a polypeptide that is co‐secreted with insulin from islet beta‐cells and is implicated in fibril formation. In this study, rat amylin was used, which does not undergo aggregation. The polypeptide underwent an interfacial transfer process, from water to the gelled organic phase, under applied potential stimulation. Cyclic voltammetry revealed steady‐state forward and peak‐shaped reverse voltammograms, which were consistent with diffusion‐controlled water‐to‐organic transfer and thin‐film stripping or desorptive back‐transfer. The diffusion‐controlled forward current was greater when amylin was present in an acidic aqueous phase than when it was present in an aqueous phase at physiological pH; this reflects the greater charge on the polypeptide under acidic conditions. The amylin transfer current was concentration dependent over the range 2–10 μM , at both acidic and physiological pH. At physiological pH, amylin was selectively detected in the presence of a protein mixture, which illustrated the bioanalytical possibilities for this electrochemical behavior.  相似文献   

14.
《化学:亚洲杂志》2017,12(22):2922-2928
For the first time, a crystalline–amorphous double‐layered NiOx film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ =550 nm. Additionally, the double‐layered film has shown better reversibility than that of amorphous and crystalline single‐layered films.  相似文献   

15.
通过一步水热法在碳纸上原位生长碳酸氢镍纳米颗粒,利用粉末X射线衍射和扫描电子显微镜对材料的结构及形貌进行表征,发现碳纸上负载纯相Ni (HCO32时具有较多的催化活性位点,利于葡萄糖的催化氧化反应进行。循环伏安法和时间-电流响应曲线表明该电极的检测限为0.98 μmol·L-1,线性范围为2.95~1.02 mmol·L-1,灵敏度为935 μA·L·mmol-1·cm-2,同时具有优异的选择性及稳定性。此外,该传感器能够实现对乳制品中葡萄糖的快速检测。这些结果表明,过渡金属和导电基底的协同作用会增强复合材料整体的导电性能和催化性能。  相似文献   

16.
The amino acid arginine was used to modify the surface of graphene oxide nanosheets and then nickel‐substituted cobalt ferrite nanoparticles were supported on those arginine‐grafted graphene oxide nanosheets (Ni0.5Co0.5Fe2O4@Arg–GO). The prepared Ni0.5Co0.5Fe2O4@Arg–GO was characterized using flame atomic absorption spectroscopy, inductively coupled plasma optical emission spectrometry, energy‐dispersive spectroscopy, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, Raman spectroscopy, X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The application of Ni0.5Co0.5Fe2O4@Arg–GO as a catalyst was examined in a one‐pot tandem oxidative cyclization of primary alcohols with o ‐phenylenediamine to benzimidazoles under aerobic oxidation conditions. The results showed that 2‐phenylbenzimidazole derivatives were successfully achieved using Ni0.5Co0.5Fe2O4@Arg–GO nanocomposite catalyst via the one‐pot tandem oxidative cyclization strategy.  相似文献   

17.
18.
19.
0IntroductionStudies of direct electrochemistry of proteins orenzymes at electrodes can serve as a basis for build-ing electrochemical biosensors,enzymatic bioreactors,and biomedical devices[1].This approach simplifiessuch devices without using mediators and is of partic-ular significance for fabricating the third generationbiosensors[2].For example,if a protein or enzyme im-mobilized on electrode surface is capable of directelectron transfer without loss of bioactivities,it can beused in the …  相似文献   

20.
袁伟  刘昉  张昭 《无机化学学报》2013,29(4):803-809
用六水合硝酸镍为镍源,尿素为沉淀剂,以少量的复合表面活性剂(SDS/P123,CTAB/P123,CTBA/SDS)为模板水热制备了介孔氧化镍。分别采用热重-差示扫描量热(TG-DSC)、傅立叶红外光谱(FTIR)、X射线衍射(XRD)、氮气吸附脱附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)对产物的结构和形貌进行了表征。用循环伏安法,恒电流充放电和交流阻抗谱等对材料进行了电化学性能的测试。结果表明,以复合表面活性剂SDS/P123为模板制备的介孔氧化镍有最大的比表面积、孔径和比电容,且当SDS/P123质量比为2:1时,所制备的氧化镍比表面积、孔径和比电容分别为209 m2.g-1,0.407 cm3.g-1,265 F.g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号