首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold(III) coordination compounds with three water-soluble porphyrins―5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TSPP4–), 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin (H2TMPyP4+), and 5,10,15,20-tetrakis(4-N,N,N-trimethylaminophenyl)porphyrin (H2TTMAPP4+)―have been studied. Complex [Au(TTMAPP)]5+ has been prepared for the first time. The analysis of coordination-induced shifts of proton signals in NMR spectra and intensities of Q bands in absorption spectra indicates the high degree of bond covalence in the studied metal porphyrins and a partial transfer of electron density from porphyrin to gold ion. The cationic complexes [Au(TMPyP)]5+ and [Au(TTMAPP)]5+ in aqueous solutions has been found to exist in monomeric form, while anionic complex [Au(TSPP)]3– undergoes dimerization upon growth of concentration and solution ionic strength. Equilibrium constant for dimerization has been calculated, the constant has been found to decrease when temperature rises. Thermodynamic parameters of dimerization process have been determined: ΔH° =–31.8 kJ/mol and ΔS° =–13.8 J/mol K.  相似文献   

2.
A novel chelating surfactant denoted as sodium N-lauroyl ethylenediamine triacetate (N-LED3A) with both surface activity and chelation functions was studied for phenanthrene (PHE) solubilisation ability. The critical micelle concentration (CMC) of N-LED3A was measured, and the effects of the initial N-LED3A concentration, temperature, pH value and coexisting ions (Na+, Ca2+ and Cu2+) on PHE solubilisation by N-LED3A were investigated. The results demonstrated that PHE solubility was efficiently enhanced by N-LED3A, especially with N-LED3A concentrations above the CMC, which was 707 mg L?1 when measured at 25°C. The temperature influenced the apparent PHE solubility slightly and the apparent solubility of PHE was significantly affected by the pH. Na and Ca were shown to increase the PHE solubility, while Ca exhibited a better promoting ability than Na+. A suitable quantity of Cu could significantly enhance the solubilisation capacities of N-LED3A at pH 5. The mechanism of the interaction between Cu+ and N-LED3A was further confirmed by Fourier transform infrared spectroscopy (FTIR). These results reveal that Cu2+ can be chelated with N-LED3A to form a chelate complex. The results implied that N-LED3A had the potential to remediate soils contaminated by both organics and heavy metals.  相似文献   

3.
A new Schiff base ligand C19H13NO5(H2L) was synthesized using 2-aminoterephthalic acid and 2-hydroxy-1-naphthaldehyde. A complex of this ligand [Cu(C19H11NO5)(C2H6O)] n was synthesized and characterized by IR, UV, fluorescence spectroscopy and X-ray diffraction single-crystal analysis. The crystal crystallizes in the monoclinic system, space group Pbca with a = 8.7745(18), b = 18.613(4), c = 24.644(5) Å, V = 4024.9(14) Å3, Z = 8, F(000) = 1816, S = 1.009, ρ calcd = 1.462 g cm?3, μ = 1.122 mm?1, the final R = 0.0477 and wR = 0.1594 for 4609 observed reflections (I > 2σ(I)). The Cu(II) is five-coordinated by one N atom and two O atoms from the Schiff base ligand and two carboxylate O atoms from another two ligands to form a distorted square-pyramidal geometry. Each ligand serves as a bridging ligand to link Cu2+ ions, leading to a two-dimensional coordination polymer. The fluorescence properties of the ligand and complex were also studied. The ligand shows strong fluorescence, and the fluorescence intensity is weakened after the Cu(II) complex formed.  相似文献   

4.
Two coordination polymers, {[Cd(L1)2(L2)] · 0.25H2O} n (I) and {[Cd(L1)(L3)H2O] · 2H2O} n (II) (L1 = 2-pyrimidineamidoxime, L2 = 4-sulfobenzoate dianion and L3 = 5-sulfosalicylate dianion), has been synthesized and structurally characterized by single-crystal X-ray diffraction (CIF files CCDC nos. 1565646 (I) and 1565728 (II)). Complex I crystallizes in monoclinic space group P21/n with a = 10.1462(3), b = 16.0152(5), c = 14.0349(5) Å, β = 93.267(3)°, V = 2276.87(13) Å3, C68H66N32O29S4Cd4, M = 2373.36, ρcalcd = 1.731 g/cm3, μ(MoKα) = 1.109 mm?1, F(000) = 1186, GOOF = 0.806, Z = 1, the final R1 = 0.0287 and wR2 = 0.0733 for I > 2σ(I). Complex II crystallizes in monoclinic space group P21 with a = 6.882(2), b = 17.138(2), c = 7.883(2) Å, β = 103.83(3)°, V = 902.8(4) Å3, C12H16N4O10SCd, M = 520.75, ρcalcd = 1.916 g/cm3, μ(MoKα) = 1.388 mm?1, F(000) = 520, GOOF = 1.047, Z = 2, the final R1 = 0.0739 and wR2 = 0.2041 for I > 2σ(I). Crystal structural analysis reveals that complex I possesses the corrugated 1D chain structure extending along the \([\bar 101]\) direction. However, complex II displays a 2D coordination network lying on the ab crystal plane, which can be simplified as a binodal 3-connected 63 topological network by considering Cd2+ ions and L3 ligands as 3-connected nodes. Their photoluminescent and thermal properties were also investigated.  相似文献   

5.
Ions of Ti(III), V(III) and Cr(III) seem to be converted to the following azido complexes in acetonitrile, propanediol-1,2-carbonate and trimethylphosphate: [Ti(N3)2]+ (inTMP), Ti(N3)3 (probably distorted octahedral inAN, PDC andTMP, low solubility inTMP), [Ti(N3)4]? (probably tetragonal inAN, probably octahedral inTMP), [Ti(N3)6 3? (probably distorted octahedral inAN andPDC); [V(N3)]2+ (inAN, PDC andTMP), V(N3)3 (octahedral inAN, PDC andTMP, low solubility inTMP), [V(N3)4]? (inPDC), [V(N3)6]3? (octahedral inAN andPDC); [Cr(N3)]2+ (inTMP), [Cr(N3)2]+ (octahedral inAN andPDC), Cr(N3)3 (octahedral inAN, PDC andTMP), [Cr(N3)6]3? (octahedral inAN andPDC).  相似文献   

6.
In the present work the complexation process between Ag+ and Mg2+ cations and 4-hydroxyphenyl-2,5-bis(2-benzofuranyl)pyridine (HBFPY) ligand was studied in pure dimethylformamide (DMF), ethanol (EtOH), acetonitrile (AN) and in (DMF-EtOH), (AN-EtOH) and (DMF-AN) binary mixed solvent solutions at different temperatures using the conductometric method. Also in this work the complexation reaction between Ca2+, K+ cations and HBFPY ligand, was studied in pure dimethylformamide (DMF), propanol (PrOH), 1,4-dioxane (DOX), ethanol (EtOH) and in DMF-PrOH, DMF-DOX and DMF-EtOH binary mixed solvent solutions at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes formed between this ligand and the studied cations is 1 : 1 [ML]. In most cases, addition of HBFPY to solutions of these cations, causes a continuous increase in the molar conductivities which indicates that the mobility of complexed cations is more than the uncomplexed ones. The stability constants of the complexes were obtained from fitting of molar conductivity curves using a computer program, GENPLOT. The stability constant of [Mg(HBFPY)]2+ complex in various neat solvents at 15°C decreases in order: EtOH > DMF > AN and the stability constant of [Ag(HBFPY)]+ complex in various neat solvents at 35°C decreases in order: DMF > EtOH. The values of standard enthalpy changes (ΔH° c ) for complexation reactions were obtained from the slope of the Van’t Hoff plots and the changes in standard entropy (ΔS° c ) were calculated from the relationship ΔH° c,295.15= ΔH° c –298.15ΔS° c .  相似文献   

7.
The novel ligand N,N,N′′′′,N′′′′-tetrabutyl-N′′′,N′′′-(N″,N″-diethyl)-ethidene bisdiglycolamide (TBEE-BisDGA) and other eight analogous extractants have been synthesized and characterized by NMR and HRMS. The solvent extraction of Th4+, UO2 2+ and Eu3+ from nitric acid solution using the above BisDGA extractants was investigated in 1-dodecanol at 30 ± 1 °C. The extractants exhibited higher affinity toward Th4+ than UO2 2+ and Eu3+ in the present system. The maximum value of separation factor SF Th(IV)/U(VI) and SF Th(IV)/Eu(III) is 78.5 and 53.3 respectively for TBEE-BisDGA, 88.1 and 69.5 respectively in the case of TB i-PE-BisDGA at 3 M HNO3 solution.  相似文献   

8.
Cobalt, zinc, hydroxoaluminum, and iron complexes of N,N′,N″,N?-tetrakis(β-diethylaminoethyl) phthalocyanine-2,3 : 9,10 : 16,17 : 23,24-tetrakis(dicarboxamide) were synthesized and were converted into the corresponding water-soluble quaternary salts by treatment with methyl iodide, methyl p-toluenesulfonate, diethyl and dimethyl sulfates, and trimethyl phosphate. The electronic absorption spectra of the quaternary salts indicated their considerable aggregation in aqueous solution; the degree of aggregation decreases in going to solutions in ethanol and disappears in DMSO.  相似文献   

9.
Two Schiff base derivatives, 4-(2-amino-3-pyridyliminomethyl)phenol (I) and 3-(2-amino-3-pyridyliminomethyl)nitrobenzene (II), were synthesised and characterised by spectroscopy. The structure of I was determined by single crystal X-ray diffraction studies. The asymmetric Schiff base derived from 2,3-diaminopyridine selectively recognise transition and heavy metal cations, and some anion. Ligands I and II form stable complexes with Cu2+, Zn2+, Pb2+, Al3+ whereas ligand I also binds F~ ions. The stoichiometry for the host: cation is 1: 1 and 2: 1. The addition of F~ ion in CH3CN to ligand I causes a colour change of the solution from colourless to yellow. The binding behaviour of ligand I towards several ions was investigated using density functional theory calculations.  相似文献   

10.
Two new dioxomolybdenum(VI) complexes, [MoO2L1(MeOH)] (I) and [MoO2L2] (II), where L1 and L2 are the anionic forms of N'-(2-hydroxy-3,5-di-tert-butylbenzylidene)-4-methoxybenzohydrazide and 2-amino-N'-(2-hydroxy-3,5-di-tert-butylbenzylidene)benzohydrazide, respectively, have been synthesized and characterized by elemental analysis, FT-IR spectra, and single crystal X-ray determination (CF files CCDC nos. 1448089 (I), 1487063 (II)). The crystal of I is monoclinic: space group P21/n, a = 7.353(1), b = 24.758(3), c = 13.891(2) Å, β = 101.013(2)°, V = 2482.3(6) Å3, Z = 4, R 1 = 0.0848, wR 2 = 0.2050. The crystal of II is monoclinic: space group P21/c, a = 6.752(1), b = 16.947(1), c = 19.510(1) Å, β = 96.891(2)°, V = 2216.5(4) Å3, Z = 4, R 1 = 0.0670, wR 2 = 0.1638. The Mo atom in complex I is in octahedral coordination, with three donor atoms of the hydrazone ligand, two oxo groups, and one methanol O atom. The Mo atom in complex II is in square pyramidal coordination, with three donor atoms of the hydrazone ligand, and two oxo groups. The complexes have interesting catalytic properties for sulfoxidation reactions.  相似文献   

11.
Layered compounds based on hydrous manganese dioxide (hereafter, Mn-phases) saturated with s-metal (Ba2+), p-metal (Pb2+), and d-metal (Mn2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+) cations, analogues of manganese minerals of oceanic ferromanganese formations (vernadite, birnessite, buserite-I, and asbolan), were prepared at 4–6°C. All Mn-phases have poorly ordered structures. The sorption properties of phase compounds were studied in relation to alkali-metal (Na+ and K+) and other s-, p-, and d-metal cations. The exchange capacities of Mn-phases for alkali cations are very low, within 0.02–0.10 mg-equiv/g; for the other cations, the exchange capacities are 0.13–4.20 mg-equiv/g. The sorption of divalent metal cations depends on the phase and chemical composition of the Mn-phase.  相似文献   

12.
The formation of chloro- and azidocomplexes of VO2+(IV) is investigated in acetonitrile (AN), propanediol-1,2-carbonate (PDC), trimethyl phosphate (TMP) by spectrophotometric, potentiometric and conductometric methods. The following coordination forms are indicated: [VOCl]+ inAN, PDC andDMSO), [VOCl2] (inAN, PDC andTMP), [VOCl3]? (inPDC andTMP[?]), [VOCl4]2? (inAN, PDC andTMP); [VON3]+ (inAN, PDC andDMSO), [VO(N3)2] (inAN, PDC, TMP andDMSO), [VO(N3)2+n]n? (inAN, PDC, TMP andDMSO). The results are interpreted by the donor numbers and sterical properties of the solvent molecules.  相似文献   

13.
The preparation of Mo(VI) hydrazone complexes, cis-[MoO2L1(CH3OH)] (I) and cis-[MoO2L2(CH3OH)] (II), derived from N'-(3-bromo-2-hydroxybenzylidene)-2-chlorobenzohydrazide (H2L1) and N'-(3-bromo-2-hydroxybenzylidene)-4-bromobenzohydrazide (H2L2), respectively, is reported. The complexes were characterized by elemental analyses, infrared and electronic spectroscopy, and single crystal structure analysis (CIF files ССDС nos. 1426875 (I), 1426871 (II)). The Mo atoms are coordinated by two cis terminal oxygen, ONO from the hydrazone ligand, and methanol oxygen. Even though the hydrazone ligands and the coordination sphere in both complexes are similar, the unit cell dimensions and the space groups are different. Complex I crystallized as orthorhombic space group Pca21 with unit cell dimensions a = 27.887(2), b = 8.0137(7), c = 15.544(1) Å, V = 3473.8(5) Å3, Z = 8, R 1 = 0.0450, wR 2 = 0.0539. Complex II crystallized as triclinic space group P1, with unit cell dimensions a = 8.2124(4), b = 8.5807(5), c = 12.9845(8) Å, α = 83.366(2)°, β = 79.201(2)°, γ = 80.482(2)°, V = 883.03(9) Å3, Z = 2, R 1 = 0.0278, wR 2 = 0.0569. The complexes were tested as catalyst for the oxidation of olefins, and showed effective activity.  相似文献   

14.
Two Mo(VI) aroylhydrazone complexes, cis-[MoO2(L1)(CH3OH)] (I) and cis-[MoO2(L2)(CH3OH)] (II), derived from 2-bromo-N'-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide (H2L1) and 2-bromo-N'-(2-hydroxy-4-methoxybenzylidene)benzohydrazide (H2L2), respectively, are reported. The complexes were characterized by elemental analyses, infrared and electronic spectroscopy, and single crystal structure analysis (CIF files CCDC nos. 1443679 (I) and 1443678 (II)). The Mo atoms are coordinated by two cis terminal oxygen, ONO from the aroylhydrazone ligand, and methanol oxygen. Complex I crystallized as monoclinic space group P21/c with unit cell dimensions a = 8.075(2), b = 13.905(1), c = 16.448(1) Å, β = 91.282(2)°, V = 1846.5(4) Å3, Z = 4, R 1 = 0.0859, wR 2 = 0.2066. Complex II crystallized as triclinic space group P \(\overline 1 \), with unit cell dimensions a = 8.0824(6), b = 10.5919(8), c = 10.7697(8), α = 96.432(2)°, β = 97.438(2)°, γ = 103.119(2)°, V = 880.8(1) Å3, Z = 2, R 1 = 0.0271, wR 2 = 0.0571. The complexes were tested as catalyst for the oxidation of olefins and showed effective activity.  相似文献   

15.
Effect of the solvent nature on the kinetics of photoreduction of 3,6-di-tert-butyl-1,2-benzoquinone and its six derivatives in the presence of N,N-dimethylaniline and 4-(N,N-dimethylamino)benzaldehyde has been investigated. It has been found that for the о-quinone—amine pair, for which the free energy change of electron transfer is ΔGe > +0.11 eV, the rate constant of о-quinone photoreduction kH decreases proportionally to the increase in the acceptor number of the solvent. For the о-quinone—amine pair with ΔGe < +0.11 eV, the kH value decreases proportionally to the increase in the donor number of the solvent. It has been established that the enhancement of the electron-acceptor properties of the solvent leads to the emergence of kinetic isotope effect for the reactant pairs of 3,6-di-tert-butyl-1,2-benzoquinone and 4,5-dimethoxy-3,6-di-tert-butyl-1,2-benzoquinone with N,N-di-methylaniline (ΔGe = +0.11 and +0.22 eV, respectively).  相似文献   

16.
Two coordination compounds of compositions [Ni(L1)(idba)(H2O)]·1.5 H2O (1) and [Ni(L2)Fe(CN)5NO]·C2H5OH (2) where L1 is N, N′-bis(3-aminopropyl)ethylenediamine, L2 is 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),2,11,13,15-pentaene, and idba2? is 2,2′-iminodibenzoate have been synthesized and characterized by elemental analysis, IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction. Complex 1 crystallizes in the monoclinic space group P21/n (No. 14) with a=9.810(2) Å, b=10.230(2) Å, c=25.350(5) Å, V=2543.6(9) Å3, Z=4, and R=0.0727. The nickel atom is six-coordinated by four N atoms of amine and two O atoms of water and idba2?. The molecular packing of the complex comprises of an infinite one-dimensional layered network in which the molecules in the crystal are held together by a system of hydrogen bonding. Complex 2, however, crystallizes in the space group C2/c (No. 15) of the monoclinic system with a=19.7990(4) Å, b=14.9440(3) Å, c=19.8800(3) Å, V=5115.90(17) Å3, Z=4, and R=0.0540. The Ni ion in compound 2 has a slightly distorted octahedral arrangement of the N4 donor atoms of primary ligand L2 and two N-donor atoms of the secondary nitroprusside ligand. The structure of 2 displays an extended one-dimensional network formed by linear [—Ni—NC—Fe—CN—] units. A cyclic voltammetric study shows that compound 1 undergoes a quasireversible oxidation attributable to Ni2+ → Ni3+ in the range 300–420 mV vs SCE.  相似文献   

17.
The process of reduction of divalent copper ions with tert-butylamine borane in dilute aqueous solutions of poly(N-vinylpyrrolidone) is investigated. The influence of polymer molecular mass on properties of the resultant Cu2O sols is studied. It is shown that Cu2O nanoparticles with an average diameter of 6–8 nm independent of polymer molecular mass and a relatively narrow size distribution of particles are formed in the systems under study. The contour length of macromolecules and the hydrodynamic diameter of a poly(N-vinylpyrrolidone) macromolecular coil are compared with the diameter of Cu2O particles. Poly(N-vinylpyrrolidone) with M ≥ 1 × 104 can be used to produce Cu2O nanoparticles. Poly(N-vinylpyrrolidone) with M > 4 × 104 should be used for the formation of long-living Cu2O sols.  相似文献   

18.
19.
Reactions of methyl 3,4,6-trioxoalkanoates (3,4-dihydroxy-6-oxo-2,4-alkadienoates) with mixtures of aromatic aldehydes and arylamines or with the corresponding N-(arylmethylidene)anilines afforded methyl (4-alkanoyl-1,5-diaryl-2-hydroxy-3-oxo-2,3-dihydro-1H-pyrrol-2-yl)acetates. The product structure was discussed on the basis of their IR, 1H NMR, and mass spectra and X-ray diffraction data, and their antimicrobial activity against Staphylococcus aureus P-209 and Escherichia coli M17 was evaluated.  相似文献   

20.
Two complexes with derivatives of pyridine as ligands were synthesized and characterized. From the reaction of 2-pyridinecarboxaldehyde oxime with Cu(OAc)2 · H2O afforded the complex C20H30N6O12Cu3 (I), and the use of 3-hydroxy-2-pyridinecarboxylic acid with anhydrous MnCl2 · 4H2O led to the formation of another complex C12H14N2OCl2Mn (II). They were characterized by X-ray diffraction (CIF files CCDC nos. 568718 (I) and 1568880 (II)), NMR, IR and elemental analysis. For I: terigonal, space group R\(\bar 3\)/H, a = 42.548(3), c = 10.2774(9) Å, V = 16113(2) Å3, Z = 18, ρcalcd = 1.367 Mg/m3, the final R factor was R1 = 0.0945, 6662 for reflections were observed with I > 2σ(I), wR = 0.162 for all data. For II: triclinic, Pī, a = 5.6174(9), b = 7.7259(13), c = 9.7160(16) Å, α = 70.444(3)°, β = 88.009(3)°, γ = 89.818(3)°, V = 397.09(11) Å3, Z = 1, ρcalcd = 1.840 Mg/m3, the final R factor was R1 = 0.0281, 4280 for reflections were observed with I > 2σ(I), wR = 0.0775 for all data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号