共查询到20条相似文献,搜索用时 15 毫秒
1.
Substituting CF2 for O4′ in Components of Nucleic Acids: Towards Systems with Reduced Propensity to Form Abasic Lesions 下载免费PDF全文
Dr. Yevgen P. Yurenko Dr. Jan Novotný Prof. Dr. Vladimir Sklenář Prof. Dr. Radek Marek 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(49):17933-17943
Intrinsic structural features and energetics of nucleotides containing variously fluorinated sugars as potential building blocks of DNA duplexes and quadruplexes are explored systematically using the modern methods of density functional theory (DFT) and quantum chemical topology (QCT). Our results suggest that fluorination at the 2′‐β or 2′‐α,β positions somewhat stabilizes in vacuo the AI relative to the BI conformations. In contrast, substitution of the CF2 group for the O4′ atom (O4′‐CF2 modification) leads to a preference of the BI relative to AI DNA‐like conformers. All the studied modifications result in a noticeable increase in the stability of the glycosidic bond [estimated by the relaxed force constants (RFC) approach], with particularly encouraging results for the O4′‐CF2 derivative. Consequently, the O4′‐CF2 modified systems are suggested and explored as promising scaffolds for the development of duplex and quadruplex structures with reduced propensity to form abasic lesions and to undergo DNA damage. 相似文献
2.
《化学:亚洲杂志》2017,12(1):110-115
The mounting evidence supporting the role of metal ions in several diseases has turned metal‐ion chelation therapy into a promising treatment strategy. The design of efficient metal‐binding ligands requires in‐depth knowledge of molecular structure and stability constants of the complexes formed. This paper presents an extensive overview on the stability of zinc(II) and copper(II) complexes of a series of cyclodextrin‐8‐hydroxyquinoline conjugates. In order to explain the differences observed in the stability constants between the metal complexes of the 6‐functionalized and 3‐functionalized cyclodextrin isomers, conformational analysis and DFT simulations were also performed. Molecular simulations allowed us to clarify the binding mode and to explain the differences in the stability constants of the metal complexes of these derivatives. 相似文献
3.
From Molecules to Materials: Computational Design of N‐Containing Porous Aromatic Frameworks for CO2 Capture 下载免费PDF全文
Prof. Jingping Zhang 《Chemphyschem》2014,15(9):1772-1778
Porous aromatic frameworks (PAFs) are novel materials with diamond topology. With the aim of enhancing their CO2 capture and storage capacity and investigating the effect of nitrogen and/or ‐COOH decorations on CO2 adsorption in PAFs, a series of N‐containing PAFs were designed based on ab initio results. The interaction energies (Eint) between CO2 and each six‐membered ring were calculated at the B2PLYP‐D2/def2‐TZVPP level, then the six‐membered rings with high CO2‐binding affinity were selected and used in the PAFs. To explore the performance of the designed PAFs, the CO2 uptake, selectivity of CO2 over CH4, H2, and N2, and the Eint value of CO2 in PAFs were investigated by using grand canonical Monte Carlo (GCMC) simulations and ab initio calculations. This work shows that pyridine with one nitrogen atom can provide a strong physisorption site for CO2, whereas more nitrogen atoms in heterocycles will reduce the interaction, especially at relatively low pressure. PAFs with ?COOH groups show high CO2 capacity. Our work provides an efficient way to understand the adsorption mechanism and a supplemental approach to experimental work. 相似文献
4.
5.
Daniel Lumpi Dr. Ernst Horkel Dr. Felix Plasser Prof. Dr. Hans Lischka Prof. Dr. Johannes Fröhlich 《Chemphyschem》2013,14(5):1016-1024
Substituted oligothiophenes have a long history in the field of organic electronics, as they often combine outstanding electro‐optical properties with the ease of synthesis. To assist the rational selection of the most promising structures to be synthesized, there is the demand for tools that allow prediction of the properties of the materials. In this study, we present strategies for synthesis and computational characterization, with respect to the fluorescence behavior of oligothiophene‐based materials for organoelectronic applications. In a combined approach, sophisticated computational methodologies are directly compared to experimental results. The M06‐2X functional in combination with the polarizable continuum model in a state‐specific formulation for excited‐state solvation proved to be particularly reliable. In addition, a semiclassical approach for describing the vibrational broadening of the spectra is employed. As a result, a robust procedure for the prediction of the fluorescence spectra of oligothiophene derivatives is presented. 相似文献
6.
Dikhi Firmansyah Marzena Banasiewicz Irena Deperasińska Artur Makarewicz Prof. Boleslaw Kozankiewicz Prof. Daniel T. Gryko 《化学:亚洲杂志》2014,9(9):2483-2493
The dehydrogenative coupling of imidazo[1,2‐a]pyridine derivative has been achieved for the first time. In cases in which the most‐electron‐rich position of the electron‐excessive heterocycle was blocked by a naphthalen‐1‐yl substituent, neither oxidative aromatic coupling nor reaction under Scholl conditions enabled the fusion of the rings. The only method that converted the substrate into the corresponding imidazo[5,1,2‐de]naphtho[1,8‐ab]quinolizine was coupling in the presence of potassium in anhydrous toluene. Moreover, we discovered new, excellent conditions for this anion‐radical coupling reaction, which employed dry O2 from the start in the reaction mixture. This method afforded vertically fused imidazo[1,2‐a]pyridine in 63 % yield. Interestingly, whereas the fluorescence quantum yield (Φfl) of compound 3 , despite the freedom of rotation, was close to 50 %, the Φfl value of flat naphthalene‐imidazo[1,2‐a]pyridine was only 5 %. Detailed analysis of this compound by using DFT calculations and a low‐temperature Shpol′skii matrix revealed phosphorescence emission, thus indicating that efficient intersystem‐crossing from the lowest‐excited S1 level to the triplet manifold was the competing process with fluorescence. 相似文献
7.
Dr. Corentin Poidevin Prof. Jean‐Paul Malrieu Dr. Georges Trinquier Dr. Christine Lepetit Dr. Faycal Allouti Prof. M. Esmail Alikhani Prof. Remi Chauvin 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(15):5295-5308
Numerous studies have underlined the putative diradical character of π‐conjugated molecules that can be described by closed‐shell Lewis structures, for instance, p‐dimethylene p–n phenylenes, or long polyacenes. In the latter compounds, the only way to save the aromaticity of the six‐membered rings is to give up the Lewis electron pairing in the singlet biradical ground state. The present work considers the possibility of doing the same by using the basic C2 units of carbo‐meric architectures. A series of acyclic and cyclic carbo‐meric architectures is studied by using UB3LYP DFT broken‐symmetry calculations, including spin decontaminations and subsequent geometry optimization of the singlet diradical. The C2 units are shown to stabilize the singlet biradical by spin delocalization, two of them playing approximately the same role as one radical‐insulating 1,4 phenylene moiety. The results are generalized to the investigation of open‐shell polyradical singlet states of rigid hydrocarbon structures, the symmetry and rigidity of which can assist cooperativity and self spin polarization effect. Several synthesis targets with challenging magnetic/spin properties are suggested in the carbo‐mer series. 相似文献
8.
Jean‐Benoît Giguère Quentin Verolet Prof. Jean‐François Morin 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(1):372-381
New p‐type, n‐type, and ambipolar molecules were synthesized from commercially available 4,10‐dibromoanthanthrone dye. Substitution at the 4,10‐ and 6,12‐positions with different electron‐rich and electron‐poor units allowed the modulation of the optoelectronic properties of the molecules. A bis(dicyanovinylene)‐functionalized compound was also prepared with a reduction potential as low as ?50 mV versus Ag+ with a crystalline two‐dimensional lamellar packing arrangement. These characteristics are important prerequisites for air‐stable n‐type organic field‐effect transistor applications. 相似文献
9.
10.
White Emitters by Tuning the Excited‐State Intramolecular Proton‐Transfer Fluorescence Emission in 2‐(2′‐Hydroxybenzofuran)benzoxazole Dyes 下载免费PDF全文
Karima Benelhadj Wenziz Muzuzu Dr. Julien Massue Dr. Pascal Retailleau Dr. Azzam Charaf‐Eddin Dr. Adèle D. Laurent Prof. Denis Jacquemin Dr. Gilles Ulrich Dr. Raymond Ziessel 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(40):12843-12857
The synthesis, structural, and photophysical properties of a new series of original dyes based on 2‐(2′‐hydroxybenzofuran)benzoxazole (HBBO) is reported. Upon photoexcitation, these dyes exhibit intense dual fluorescence with contribution from the enol (E*) and the keto (K*) emission, with K* being formed through excited‐state intramolecular proton transfer (ESIPT). We show that the ratio of emission intensity E*/K* can be fine‐tuned by judiciously decorating the molecular core with electron‐donating or ‐attracting substituents. Push–pull dyes 9 and 10 functionalized by a strong donor (nNBu2) and a strong acceptor group (CF3 and CN, respectively) exhibit intense dual emission, particularly in apolar solvents such as cyclohexane in which the maximum wavelength of the two bands is the more strongly separated. Moreover, all dyes exhibit strong solid‐state dual emission in a KBr matrix and polymer films with enhanced quantum yields reaching up to 54 %. A wise selection of substituents led to white emission both in solution and in the solid state. Finally, these experimental results were analyzed by time‐dependent density functional theory (TD‐DFT) calculations, which confirm that, on the one hand, only E* and K* emission are present (no rotamer) and, on the other hand, the relative free energies of the two tautomers in the excited state guide the ratio of the E*/K* emission intensities. 相似文献
11.
Solvatochromic Study of Highly Fluorescent Alkylated Isocyanonaphthalenes,Their π‐Stacking,Hydrogen‐Bonding Complexation,and Quenching with Pyridine 下载免费PDF全文
Dr. Miklós Nagy Dávid Rácz Dr. László Lázár Dr. Mihály Purgel Tamás Ditrói Dr. Miklós Zsuga Prof. Dr. Sándor Kéki 《Chemphyschem》2014,15(16):3614-3625
Mono‐ and dialkylated derivatives of 1‐amino‐5‐isocyanonaphthalene (ICAN) were studied as new members of a multifunctional, easy‐to‐prepare fluorophore family, which showed excellent solvatochromic properties. The monoallyl derivative and the starting ICAN exhibited strong fluorescence quenching in the presence of small amounts of pyridine. The formation of a hydrogen‐bonded ground‐state pyridine complex was detected; however, analysis of quantum chemical calculations suggested the presence of an additional π‐stacked pyridine complex. The Stern–Volmer plot of the quenching process exhibited a downward curvature and after reaching a minimum the fluorescence intensity increased back to a significant level at high pyridine concentrations. Significant fluorescence was observed even in pure pyridine. A new mechanism and a simple mathematical equation were derived to explain the downward curvature and the remaining fluorescence by the formation of a fluorescent π‐stacked complex. 相似文献
12.
Andreas Winter Dr. Christian Friebe Manuela Chiper Dr. Ulrich S. Schubert Prof. Dr. Martin Presselt Benjamin Dietzek Dr. Michael Schmitt Dr. Jürgen Popp Prof. Dr. 《Chemphyschem》2009,10(5):787-798
Leading light : A series of zinc(II) bis‐terpyridine complexes (see picture) is investigated by means of DFT calculations combined with Bader's quantum theory of atoms in molecules. Raman spectroscopy experiments and studies of the electro‐optical properties of the complexes in solution and the solid state are also performed to examine their potential as new emissive materials in light‐emitting devices.
13.
Giorgio Volpi Claudio Garino Dr. Luca Salassa Dr. Jan Fiedler Kenneth I. Hardcastle Prof. Roberto Gobetto Prof. Carlo Nervi Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(26):6415-6427
Luminescent ligands in IrIII cyclometalated complexes. The photophysical and photochemical properties of Ir‐cyclometalated complexes containing luminescent ligands are evaluated (see figure). Significant admixture between Ir and ligand orbitals induces an efficient intersystem crossing. Photochemical reactions performed in the presence of oxygen lead to new Ir‐cyclometalated complexes containing N(amido) groups directly bound to Ir.
14.
15.
A new fluorescent chemosensor based upon 1,8‐naphthalimide and 8‐hydroxyquinoline was synthesized, and its fluorescent properties in the presence of different metal cations (Hg2+, Ag+, Zn2+, Fe2+, Cd2+, Pb2+, Ca2+, Cu2+, Mg2+, and Ba2+) were investigated. It displayed fluorescence quenching with some heavy and transition metal (HTM) ions, and the quenching strongly depended on the nature of HTM ions. 相似文献
16.
Arup Mukherjee Tamal K. Sen Dr. Pradip Kr. Ghorai Dr. Prinson P. Samuel Dr. Carola Schulzke Dr. Swadhin K. Mandal 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(34):10530-10545
Herein, we report the synthesis and characterization of two organozinc complexes that contain symmetrical phenalenyl (PLY)‐based N,N‐ligands. The reactions of phenalenyl‐based ligands with ZnMe2 led to the formation of organozinc complexes [N(Me),N(Me)‐PLY]ZnMe ( 1 ) and [N(iPr),N(iPr)‐PLY]ZnMe ( 2 ) under the evolution of methane. Both complexes ( 1 and 2 ) were characterized by NMR spectroscopy and elemental analysis. The solid‐state structures of complexes 1 and 2 were determined by single‐crystal X‐ray crystallography. Complexes 1 and 2 were used as catalysts for the intramolecular hydroamination of unactivated primary and secondary aminoalkenes. A combined approach of NMR spectroscopy and DFT calculations was utilized to obtain better insight into the mechanistic features of the zinc‐catalyzed hydroamination reactions. The progress of the catalysis for primary and secondary aminoalkene substrates with catalyst 2 was investigated by detailed kinetic studies, including kinetic isotope effect measurements. These results suggested pseudo‐first‐order kinetics for both primary and secondary aminoalkene activation processes. Eyring and Arrhenius analyses for the cyclization of a model secondary aminoalkene substrate afforded ΔH≠=11.3 kcal mol?1, ΔS≠=?35.75 cal K?1 mol?1, and Ea=11.68 kcal mol?1. Complex 2 exhibited much‐higher catalytic activity than complex 1 under identical reaction conditions. The in situ NMR experiments supported the formation of a catalytically active zinc cation and the DFT calculations showed that more active catalyst 2 generated a more stable cation. The stability of the catalytically active zinc cation was further supported by an in situ recycling procedure, thereby confirming the retention of catalytic activity of compound 2 for successive catalytic cycles. The DFT calculations showed that the preferred pathway for the zinc‐catalyzed hydroamination reactions is alkene activation rather than the alternative amine‐activation pathway. A detailed investigation with DFT methods emphasized that the remarkably higher catalytic efficiency of catalyst 2 originated from its superior stability and the facile formation of its cation compared to that derived from catalyst 1 . 相似文献
17.
Dr. Jean‐Christophe M. Monbaliu Dr. Finn K. Hansen Lucas K. Beagle Dr. Matthew J. Panzner Prof. Dr. Peter J. Steel Dr. Ekaterina Todadze Prof. Dr. Christian V. Stevens Prof. Dr. Alan R. Katritzky 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(9):2632-2638
Open chain Cbz‐L ‐aa1‐L ‐Pro‐Bt (Bt=benzotriazole) sequences were converted into either the corresponding trans‐ or cis‐fused 2,5‐diketopiperazines (DKPs) depending on the reaction conditions. Thermodynamic tandem cyclization/epimerization afforded selectively the corresponding trans‐DKPs (69–75 %). Complementarily, tandem deprotection/cyclization led to the cis‐DKPs (65–72 %). A representative set of proline‐containing cis‐ and trans‐DKPs has been prepared. A mechanistic investigation, based on chiral HPLC, kinetics, and computational studies enabled a rationalization of the results. 相似文献
18.
Prof. Valery F. Sidorkin Dr. Evgeniya P. Doronina Dr. Elena F. Belogolova 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(31):10302-10311
DFT (B3LYP, M06‐2X) and MP2 methods are applied to the design of a wide series of the potentially 10‐C‐5 neutral compounds based on 6‐azabicyclotetradecanes: XC1(YCH2CH2CH2)3N 1 – 3 , XC1(YC6H4CH2)3N 4 – 6 , XC1[Y(tBuC6H3)CH2]3N 7 – 9 and carbatranophanes 10 – 25 (X=Me, F, Cl; Y=O, NH, CH2, SiH2; Z=O, CH2, (CH2)2, (CH2)3). Carbatranophanes 10 – 25 are characterized by a sterical compression of their axial 3c–4e XC1←N fragment with respect to that in the parent molecules 4 – 6 . A magnitude of the revealed effect depends on a valence surrounding of the central carbon atom C1, the size and the nature of the side chains (Z) that link the “π‐electron cap” with a tetradecane backbone. This circumstance allowed us to obtain 10‐C‐5 structures with the configuration of the bonds around the C1 atom, which corresponds to practically an ideal trigonal bipyramid. In these compounds, the values of the covalence ratio χ of approximately 0.6 for the coordination C1←N contacts with a covalent contribution (atoms in molecules (AIM) and natural bond orbital (NBO)) are record in magnitude. These values lie close to a low limit of the interval of the χSi←D change (0.6–0.9) being characteristic of the dative and ionic‐covalent (by nature) Si←D bond (D=N, O) in the known 10‐Si‐5 silicon compounds. 相似文献
19.
20.
David Zanders Goran Ba
i Dominique Leckie Oluwadamilola Odegbesan Jeremy Rawson Jason D. Masuda Anjana Devi Sen T. Barry 《Angewandte Chemie (International ed. in English)》2020,59(33):14138-14142
Attempted preparation of a chelated CoII β‐silylamide resulted in the unprecedented disproportionation to Co0 and a spirocyclic cobalt(IV) bis(β‐silyldiamide): [Co[(NtBu)2SiMe2]2] ( 1 ). Compound 1 exhibited a room‐temperature magnetic moment of 1.8 B.M. and a solid‐state axial EPR spectrum diagnostic of a rare S= configuration for tetrahedral CoIV. Ab initio semicanonical coupled‐cluster calculations (DLPNO‐CCSD(T)) revealed the doublet state was clearly preferred (?27 kcal mol?1) over higher spin configurations only for the bulky tert‐butyl‐substituted analogue. Unlike other CoIV complexes, 1 had remarkable thermal stability, and was demonstrated to form a stable self‐limiting monolayer in preliminary atomic layer deposition (ALD) surface saturation experiments. The ease of synthesis and high stability make 1 an attractive starting point to investigate otherwise inaccessible CoIV intermediates and for synthesizing new materials. 相似文献