首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Layered protonated titanates (LPTs), a class of interesting inorganic layered materials, have been widely studied because of their many unique properties and their use as precursors to many important TiO(2)-based functional materials. In this work, we have developed a facile solvothermal method to synthesize hierarchical spheres (HSs) assembled from ultrathin LPT nanosheets. These LPT hierarchical spheres possess a porous structure with a large specific surface area and high stability. Importantly, the size and morphology of the LPT hierarchical spheres are easily tunable by varying the synthesis conditions. These LPT HSs can be easily converted to anatase TiO(2) HSs without significant structural alteration. Depending on the calcination atmosphere of air or N(2), pure anatase TiO(2) HSs or carbon-supported TiO(2) HSs, respectively, can be obtained. Remarkably, both types of TiO(2) HSs manifest excellent cyclability and rate capability when evaluated as anode materials for high-power lithium-ion batteries.  相似文献   

2.
唐泽坤  黄欢  管杰  于涛  邹志刚 《无机化学学报》2012,28(11):2401-2406
利用简便的溶剂热法,制得了由锐钛矿相的纳米片组成的、{001}面接近100%暴露的TiO2分级球形结构。利用电泳沉积法,将所得的TiO2分级球形结构作为散射层引入到染料敏化太阳电池(DSSC)中,并很好地保护了这种脆弱的分级结构。由于这种分级球形结构比TiO2纳米颗粒具有更好的染料吸附性能和光散射性能,使用这种TiO2分级球形结构作为散射层的DSSC达到了7.38%的光电转换效率,较之基于TiO2纳米颗粒的DSSC有了26%的提高。  相似文献   

3.
We report a facile non‐hydrothermal method for the large‐scale production of hierarchical TiO2 nanorod spheres for the photocatalytic elimination of contaminants and killing bacteria. Crescent Ti/RF spheres were prepared by deliberately adding titanium trichloride (TiCl3) to the reaction of resorcinol (R) and formaldehyde (F) in an open reactor under heating and stirring. The hierarchical TiO2 nanorod spheres were obtained by calcining the crescent Ti/RF spheres in a furnace in air to burn off the RF spheres. This method has many merits, such as large‐scale production, good crystallisation of TiO2, and good reproducibility, all of which are difficult to realise by conventional hydrothermal methods. The calcination temperature plays a significant role in influencing the morphology, crystallisation, porosity, Brunauer–Emmett–Teller (BET) specific surface area, and hierarchy of the TiO2 nanorod spheres, thus resulting in different photocatalytic performances under UV light and solar light irradiation. The experimental results have demonstrated that the hierarchical TiO2 nanorod spheres obtained after calcination of the crescent Ti/RF spheres at different temperatures displayed similar photocatalytic activities under irradiation with UV light. We attribute this to a balance of opposing effects of the investigated factors. A higher calcination temperature leads to greater light absorption capability of the TiO2 nanorod spheres, thus resulting in higher photocatalytic antibacterial activity under solar light irradiation. It is also interesting to note that the hierarchical TiO2 nanorod spheres displayed intrinsic antibacterial activity in the absence of light irradiation, apparently because their sharp outward spikes can easily pierce and penetrate the walls of bacteria. In this study, the sharpest hierarchical TiO2 nanorod spheres were obtained after calcination at 500 °C, and these exhibited the highest antibacterial activity without light irradiation. A higher calcination temperature proved detrimental to the sharpness of the TiO2 nanorods, thus reducing their intrinsic antibacterial activity.  相似文献   

4.
《化学:亚洲杂志》2017,12(1):95-100
Titanium dioxide (TiO2) spheres are potential candidates to fabricate three‐dimensional (3D) photonic crystals owing to their high refractive index and low absorption in the visible and near‐infrared regions. Here, TiO2 spheres with both high surface charge density and uniform size, which are necessary for the self‐assembly of TiO2 spheres, have been prepared by means of sol–gel methods in ethanol in the presence of thioglycolic acid as ligand. Thioglycolic acid, which contains two functional groups, not only acts as coordinating ligand for stabilizing and controlling the growth of TiO2 spheres but also endows the resulting TiO2 spheres with high charge density as based on ζ ‐potential analysis when the pH of the TiO2 aqueous dispersion was 6.5 or higher. The SEM images illustrate that the diameter of the prepared TiO2 spheres can be tuned from 100 to 300 nm by simply controlling the concentration of H2O. FTIR spectra confirm that thioglycolic acid bonded to the surface of TiO2 spheres through carboxylic groups. As anticipated, the obtained TiO2 spheres could self‐assemble to form a 3D opal photonic crystal structure by means of a simple gravity sedimentation method. Then the TiO2 spheres in the 3D opal photonic crystal structure were able to transform into a pure anatase phase by annealing at different temperatures.  相似文献   

5.
《化学:亚洲杂志》2017,12(22):2942-2949
Hollow hybrid nanostructures have received significant attention because of their unique structural features. This study reports a facile ion adsorption–heating method to fabricate hollow PbS‐TiO2 hybrid particles. In this method, the TiO2 spheres used as a substrate material to grow PbS are aggregates of many small amorphous TiO2 particles, and each small particle is covered with thioglycolic acid ligands through Ti4+–carboxyl coordination. When Pb2+ ions are added to a colloidal solution of these TiO2 spheres, these ions are adsorbed by sulfhydryl (‐SH) groups to form metal thiolates, and the C−S bond is dissociated by heating to release S2−. The S2− ions react with Pb2+ ions to form PbS without additive sulfur sources. Additionally, the amorphous TiO2 spheres are transformed into the anatase phase during the heating process. As a result, the crystallization of TiO2 spheres along with the formation of PbS is simultaneously carried out by heating. During the heating process, owing to the Kirkendall effect of S2− diffusion and the Ostwald ripening effect of the crystallization of amorphous TiO2 spheres, PbS‐TiO2 hollow hybrid structures can be obtained. The XRD and XPS characterizations proved the formation of anatase TiO2 and PbS. The TEM characterization confirmed the formation of hollow structures in the PbS‐TiO2 hybrid sample. The photocatalytic activity of the hollow PbS‐TiO2 hybrid spheres have been investigated for the degradation of Cr6+ under visible light. The results show that hollow PbS‐TiO2 hybrid spheres exhibited the highest photocatalytic activity, in which almost all the Cr6+ was degraded after 140 min.  相似文献   

6.
The high‐pressure hydrogenation of commercially available anatase or anatase/rutile TiO2 powder can create a photocatalyst for H2 evolution that is highly effective and stable without the need for any additional co‐catalyst. This activation effect cannot be observed for rutile; however, for anatase/rutile mixtures, a strong synergistic effect can be found (similar to results commonly observed for noble‐metal‐decorated TiO2). EPR and PL measurements indicated the intrinsic co‐catalytic activation of anatase TiO2 to be due to specific defect centers formed during hydrogenation. These active centers can be observed specifically for high‐pressure hydrogenation; other common reduction treatments do not result in this effect.  相似文献   

7.
用简单的无模板水热法可控合成了金红石相锥刺和锐钛矿相空心球的海胆状TiO2多级结构。研究了制备介质pH值和反应时间对形貌的影响。空心球上锥刺的密度可以通过改变反应条件加以调控。对海胆状TiO2多级结构可能的形成机理进行了研究。将不同锥刺密度的TiO2空心球应用于亚甲基蓝降解的光催化研究,结果表明低锥刺密度的TiO2空心球的光催化效果优于P25-TiO2,更优于锥刺多和无锥刺的光滑TiO2空心球。  相似文献   

8.
Structure‐forming processes leading to biominerals are well worth learning in pursuit of new synthetic techniques. Strategies that attempt to mimic nature in vitro cannot replace an entire complex natural organism, requiring ingenuity beyond chemists′ hands. A “bioprocess‐inspired synthesis” is demonstrated for fabrication of N‐doped TiO2 materials at ambient temperature by direct implantation of precursor into living mussels. The amorphous precursor transforms into N‐doped anatase TiO2 with a hierarchical nanostructure. Synthetic TiO2 exhibits high phase stability and enhanced visible‐light photocatalytic activity as a result of modifications to its band gap during in vivo mineralization. Intracellular proteins were found to be involved in TiO2 mineralization. Our findings may inspire material production by new synthetic techniques, especially under environmentally benign conditions.  相似文献   

9.
TiO2 nanotubes have been synthesized in a hydrothermal system. The nanotubes were characterized by scanning electronic microscopy (SEM), FT-Raman spectroscopy and surface charge density by surface area analyzer. These nanocatalysts were applied to photocatalyse indigo carmine dye degradation. Photodegradation ability of TiO2 nanotubes was compared to TiO2 anatase photoactivity. Indigo carmine dye was completely degraded at 60 and 110 min of reaction catalysed by TiO2 nanotubes and TiO2 anatase, respectively. TiO2 nanotubes presented high photodegradation activity at pH 2 and TiO2 anatase at pH 4. TiO2 nanotubes were easily recycled whereas the reuse of TiO2 anatase was not effective. Nanotubes maintained 90% of activity after 10 catalytic cycles and TiO2 anatase presented only 10% of its activity after 10 cycles.  相似文献   

10.
A novel hierarchically heterostructured TiO2 nanocomposite, which consists of rutile nanosheets perpendicular standing on anatase nanofibers, is successfully created through a two-step approach. Firstly, the fibrous anatase TiO2 framework is fabricated by a facile electrospinning method, then a layer of relative uniform rutile nanosheets grow on the fibers after a mild solvothermal reaction process. This work provides a convenient and effective route for fabricating desired three-dimensional nanocomposite and should be easily extended through to many other materials system.  相似文献   

11.
A series of TiO2‐TUD‐1 samples was synthesized with a variable Ti loading in the range Si/Ti=100, 20, 2.5, and 1.6, by using a one‐pot surfactant‐free procedure. The materials obtained were characterized by elemental analysis; X‐ray diffraction (XRD); N2 sorption measurements; high‐resolution TEM (HR‐TEM); 29Si NMR, UV‐visible and Raman spectroscopy. As a function of increasing metal loading either isolated Ti atoms, or (above a Ti loading of ~2.5 wt‐ %) combinations of isolated Ti atoms and anatase (TiO2) nanoparticles were obtained; both were incorporated in the highly porous siliceous matrix. The photocatalytic performance of these materials was tested by studying the propane oxidation process following irradiation at λ=365 nm, selectively activating the anatase nanoparticles. In comparison to commercial anatase powder, TiO2 nanoparticles in TUD‐1 showed high photochemical selectivity towards acetone, the sample with a Si/Ti ratio of 1.6 being the most selective. Size and confinement effects are consistent with the difference in performance of the TUD‐1 materials and TiO2, limiting the number of electron transfers available for each propane molecule.  相似文献   

12.
Although the synthesis of mesoporous materials is well established, the preparation of TiO2 fiber bundles with mesostructures, highly crystalline walls, and good thermal stability on the RGO nanosheets remains a challenge. Herein, a low‐cost and environmentally friendly hydrothermal route for the synthesis of RGO nanosheet‐supported anatase TiO2 fiber bundles with dense mesostructures is used. These mesostructured TiO2‐RGO materials are used for investigation of Li‐ion insertion properties, which show a reversible capacity of 235 mA h g?1 at 200 mA g?1 and 150 mA h g?1 at 1000 mA g?1 after 1000 cycles. The higher specific surface area of the new mesostructures and high conductive substrate (RGO nanosheets) result in excellent lithium storage performance, high‐rate performance, and strong cycling stability of the TiO2‐RGO composites.  相似文献   

13.
A facile method was used to prepare hollow mesoporous TiO2 and Au@TiO2 spheres using polystyrene (PS) templates. Au nanoparticles (NPs) were simultaneously synthesized and attached on the surface of PS spheres by reducing AuCl4? ions using sodium citrate which resulted in the uniform deposition of Au NPs. The outer coating of titania via sol‐gel produced PS@Au@TiO2 core–shell spheres. Removing the templates from these core–shell spheres through calcination produced hollow mesoporous and crystalline Au@TiO2 spheres with Au NPs inside the TiO2 shell in a single step. Anatase spheres with double Au NPs layers, one inside and another outside of TiO2 shell, were also prepared. Different characterization techniques indicated the hollow mesoporous and crystalline morphology of the prepared spheres with Au NPs. Hollow anatase spheres with Au NPs indicated enhanced harvesting of visible light and therefore demonstrated efficient catalytic activity toward the degradation of organic dyes under the irradiation of visible light as compared to bare TiO2 spheres.  相似文献   

14.
Structurally thermostable mesoporous anatase TiO2 (m‐TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores‐directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high‐angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X‐ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high‐temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye‐sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m‐TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25–m‐TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56 %) in the P25–m‐TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60 %) of the device, compared to DSSCs with a monolayer of P25 as the electrode.  相似文献   

15.
Unique ordered TiO2 superstructures with tunable morphology and crystalline phase were successfully prepared by the use of different counterions. Dumbbell‐shaped rutile TiO2 and nanorod‐like rutile mesocrystals constructed from ultrathin nanowires, and quasi‐octahedral anatase TiO2 mesocrystals built from tiny nanoparticle subunits were achieved. Interestingly, the obtained anatase mesocrystals have a fine microporous structure and a large surface area. The influence of the counterions in the reaction system is discussed and possible mechanisms responsible for the formation of the unique ordered TiO2 superstructures with different morphologies and crystalline phases are also proposed based on a series of experimental results. The obtained TiO2 superstructures were used as anode materials in lithium ion batteries, and exhibited higher capacity and improved rate performance; this is attributed to the intrinsic characteristics of the mesoscopic TiO2 superstructures, which have a single‐crystal‐like and porous nature.  相似文献   

16.
Hydrolysis of TiCl4 in a diether‐functionalized imidazolium ionic liquid (IL), namely 1‐methyl‐3‐[2‐(2‐methoxy(ethoxy)ethyl]imidazolium methane sulfonate (M(MEE)I ? CH3SO3), results in a heterostructured organic/inorganic and sponge‐like porous TiO2 material. The thermal treatment (300 °C) followed by calcination (500 °C) affords highly porous TiO2. The characterization of the obtained samples (with and without IL, before and after calcination) by XRD, SEM, and TEM reveals TiO2 anatase crystalline phases and irregular‐shaped particles with different porous structures. These hierarchical‐structured mesoporous TiO2 nanomaterials were employed as efficient photocatalysts in the water‐splitting process, yielding up to 1304 μmol g?1 on hydrogen production.  相似文献   

17.
Although TiO2 is an efficient photocatalyst, its large band gap limits its photocatalytic activity only to the ultraviolet region. An experimentally synthesized ternary Fe/C/S‐doped TiO2 anatase showed improved visible light photocatalytic activity. However, a theoretical study of the underlying mechanism of the enhanced photocatalytic activity and the interaction of ternary Fe/C/S‐doped TiO2 has not yet been investigated. In this study, the defect formation energy, electronic structure and optical property of TiO2 doped with Fe, C, and S are investigated in detail using the density functional theory + U method. The calculated band gap (3.21 eV) of TiO2 anatase agree well with the experimental band gap (3.20 eV). The defect formation energy shows that the co‐ and ternary‐doped systems are thermodynamically favorable under oxygen‐rich condition. Compared to the undoped TiO2, the absorption edge of the mono‐, co‐, and ternary‐doped TiO2 is significantly enhanced in the visible light region. We have shown that ternary doping with C, S, and Fe induces a clean band structure without any impurity states. Moreover, the ternary Fe/C/S‐doped TiO2 exhibit an enhanced photocatalytic activity, a smaller band gap and negative formation energy compared to the mono‐ and co‐doped systems. Moreover, the band edges of Fe/C/S‐doped TiO2 align well with the redox potentials of water, which shows that the ternary Fe/C/S‐doped TiO2 is promising photocatalysts to split water into hydrogen and oxygen. These findings rationalize the available experimental results and can assist the design of TiO2‐based photocatalyst materials.  相似文献   

18.
Hollow anatase titania (TiO2) spheres were synthesized using fructose and tetrabutyl titanate (Ti(OC4H9)4, TBT) as the precursors via the conventional hard template method. The morphological, structural and thermal properties of the products were characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG‐DTA), Brunauer? Emmett? Teller (BET) surface area analysis and diffuse reflectance ultraviolet visible (DR UV? Vis) spectroscopy. XRD revealed that the hollow TiO2 prepared was in the anatase phase and the BET surface area measured was about 22 m2 g?1. The photocatalytic activity of the synthesized hollow anatase TiO2 in the photodecomposition of chlorpyrifos was 18.67 % higher than that obtained using commercial TiO2.  相似文献   

19.
The ability to effectively transfer photoexcited electrons and holes is an important endeavor toward achieving high‐efficiency solar energy conversion. Now, a simple yet robust acid‐treatment strategy is used to judiciously create an amorphous TiO2 buffer layer intimately situated on the anatase TiO2 surface as an electron‐transport layer (ETL) for efficient electron transport. The facile acid treatment is capable of weakening the bonding of zigzag octahedral chains in anatase TiO2, thereby shortening staggered octahedron chains to form an amorphous buffer layer on the anatase TiO2 surface. Such amorphous TiO2‐coated ETL possesses an increased electron density owing to the presence of oxygen vacancies, leading to efficient electron transfer from perovskite to TiO2. Compared to pristine TiO2‐based devices, the perovskite solar cells (PSCs) with acid‐treated TiO2 ETL exhibit an enhanced short‐circuit current and power conversion efficiency.  相似文献   

20.
Hierarchical MoS2 shells supported on carbon spheres (denoted as C@MoS2) have been synthesized through a one‐step hydrothermal method. The obtained hierarchical C@MoS2 microspheres simultaneously integrate the structural and compositional design rationales for high‐energy electrode materials based on two‐dimensional (2D) nanosheets. When evaluated as an anode material for lithium‐ion batteries (LIBs), the hierarchical C@MoS2 microspheres manifest high specific capacity, enhanced cycling stability and good rate capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号