首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pnictocenium salts [Cp*PCl]+[μCl]? ( 1 a ), [Cp*PCl]+[ClAl(ORF)3]? ( 1 b ), [Cp*AsCl]+[ClAl(ORF)3]? ( 2 ), and [(Cp*)2P]+[μCl]? ( 3 ), in which Cp*=Me5C5, μCl=(FRO)3Al? Cl? Al(ORF)3, and ORF=OC(CF3)3, were prepared by halide abstraction from the respective halopnictines with the Lewis superacid PhF→Al(ORF)3. 1 The X‐ray crystal structures of 1 a , 2 , and 3 established that in the half as well as in the sandwich cations the Cp* rings are attached in an η2‐fashion. By using one or two equivalents of the Lewis acid, the two new weakly coordinating anions [μCl]? and [ClAl(ORF)3]? resulted. They also stabilize the highly reactive cations in PhF or 1,2‐F2C6H4 solution at room temperature. The chloride ion affinities (CIAs) of a range of classical strong Lewis acids were also investigated. The calculations are based on a set of isodesmic BP86/SV(P) reactions and a non‐isodesmic reference reaction assessed at the G3MP2 level.  相似文献   

2.
We report herein the synthesis and full characterization of the donor‐free Lewis superacids Al(ORF)3 with ORF=OC(CF3)3 ( 1 ) and OC(C5F10)C6F5 ( 2 ), the stabilization of 1 as adducts with the very weak Lewis bases PhF, 1,2‐F2C6H4, and SO2, as well as the internal C? F activation pathway of 1 leading to Al2(F)(ORF)5 ( 4 ) and trimeric [FAl(ORF)2]3 ( 5 , ORF=OC(CF3)3). Insights have been gained from NMR studies, single‐crystal structure determinations, and DFT calculations. The usefulness of these Lewis acids for halide abstractions has been demonstrated by reactions with trityl chloride (NMR; crystal structures). The trityl salts allow the introduction of new, heteroleptic weakly coordinating [Cl‐Al(ORF)3]? anions, for example, by hydride or alkyl abstraction reactions.  相似文献   

3.
A series of gold acetonitrile complexes [Au(NCMe)2]+[WCA]? with weakly coordinating counterions (WCAs) was synthesized by the reaction of elemental gold and nitrosyl salts [NO]+[WCA]? in acetonitrile ([WCA]? = [GaCl4]?, [B(CF3)4]?, [Al(ORF)4]?; RF = C(CF3)3). In the crystal structures, the [Au(NCMe)2]+ units appeared as monomers, dimers, or chains. A clear correlation between the aurophilicity and the coordinating ability of counterions was observed, with more strongly coordinating WCAs leading to stronger aurophilic contacts (distances, C?N stretching frequencies of [Au(NCMe)2]+ units). An attempt to prepare [Au(L)2]+ units, even with less weakly basic solvents like CH2Cl2, led to decomposition of the [Al(ORF)4]? anion and formation of [NO(CH2Cl2)2]+[F(Al(ORF)3)2]?. All nitrosyl reagents [NO]+[WCA]? were generated according to an optimized procedure and were thoroughly characterized by Raman and NMR spectroscopy. Moreover, the to date unknown species [NO]+[B(CF3)3CN]? was prepared. Its reaction with gold unexpectedly produced [Au(NCMe)2]+[Au(NCB(CF3)3)2]?, in which the cyanoborate counterion acts as an anionic ligand itself. Interestingly, the auroborate anion [Au(NCB(CF3)3)2]? behaves as a weakly coordinating counterion, which becomes evident from the crystallographic data and the vibrational spectral characteristics of the [Au(NCMe)2]+ cation in this complex. Ligand exchange in the only room temperature stable salt of this series, [Au(NCMe)2]+[Al(ORF)4]?, is facile and, for example, [Au(PPh3)(NCMe)]+[Al(ORF)4]? can be selectively generated. This reactivity opens the possibility to generate various [AuL1L2]+[Al(ORF)4]? salts through consecutive ligand‐exchange reactions that offer access to a huge variety of AuI complexes for gold catalysis.  相似文献   

4.
Attempts to prepare previously unknown simple and very Lewis acidic [RZn]+[Al(ORF)4]? salts from ZnR2, AlR3, and HO?RF delivered the ion‐like RZn(Al(ORF)4) (R=Me, Et; RF=C(CF3)3) with a coordinated counterion, but never the ionic compound. Increasing the steric bulk in RZn+ to R=CH2CMe3, CH2SiMe3, or Cp*, thus attempting to induce ionization, failed and led only to reaction mixtures including anion decomposition. However, ionization of the ion‐like EtZn(Al(ORF)4) compound with arenes yielded the [EtZn(arene)2]+[Al(ORF)4]? salts with arene=toluene, mesitylene, or o‐difluorobenzene (o‐DFB)/toluene. In contrast to the ion‐like EtZn(η3‐C6H6)(CHB11Cl11), which co‐crystallizes with one benzene molecule, the less coordinating nature of the [Al(ORF)4]? anion allowed the ionization and preparation of the purely organometallic [EtZn(arene)2]+ cation. These stable materials have further applications as, for example, initiators of isobutene polymerization. DFT calculations to compare the Lewis acidities of the zinc cations to those of a large number of organometallic cations were performed on the basis of fluoride ion affinity. The complexation energetics of EtZn+ with arenes and THF was assessed and related to the experiments.  相似文献   

5.
Herein we report on the facile access to a GaI and InI complex salt of pentamethyldiethylenetriamine (PMDTA) with the weakly coordinating counterion [Al(ORF)4] [RF = C(CF3)3]. Thus, the low temperature reaction of [M(PhF)2]+ (M = Ga, In) solutions in 1,2-F2C6H4 (oDFB) with PMDTA yielded the title compounds M(PMDTA)+[Al(ORF)4] (M = Ga 1 , in 2 ) in non-optimized yields. Both compounds are highly sensitive towards air and moisture, have a rather limited lifetime at room temperature, but were structurally characterized.  相似文献   

6.
Ion‐like ethylzinc(II) compounds with weakly coordinating aluminates [Al(ORF)4]? and [(RFO)3Al‐F‐Al(ORF)3]? (RF=C(CF3)3) were synthesized in a one‐pot reaction and fully characterized by single‐crystal X‐ray diffraction, NMR and vibrational spectroscopy, and by quantum chemical calculations. The catalytic activity of ion‐like Et‐Zn[Al(ORF)4] in intermolecular hydroamination and in the unusual double hydroamination of anilines and alkynes was investigated. Favorable performance was also found in comparison to the Et2Zn/ [PhNMe2H]+[B(C6F5)4]? system generated in situ at lower catalyst loadings of 2.5 mol %.  相似文献   

7.
The complexes Ag(L)n[WCA] (L=P4S3, P4Se3, As4S3, and As4S4; [WCA]=[Al(ORF)4] and [F{Al(ORF)3}2]; RF=C(CF3)3; WCA=weakly coordinating anion) were tested for their performance as ligand-transfer reagents to transfer the poorly soluble nortricyclane cages P4S3, P4Se3, and As4S3 as well as realgar As4S4 to different transition-metal fragments. As4S4 and As4S3 with the poorest solubility did not yield complexes. However, the more soluble silver-coordinated P4S3 and P4Se3 cages were transferred to the electron-poor Fp+ moiety ([CpFe(CO)2]+). Thus, reaction of the silver salt in the presence of the ligand with Fp−Br yielded [Fp−P4S3][Al(ORF)4] ( 1 a ), [Fp−P4S3][F(Al(ORF)3)2] ( 1 b ), and [Fp−P4Se3][Al(ORF)4] ( 2 ). Reactions with P4S3 also yielded [FpPPh3−P4S3][Al(ORF)4] ( 3 ), a complex with the more electron-rich monophosphine-substituted Fp+ analogue [FpPPh3]+ ([CpFe(PPh3)(CO)]+). All complex salts were characterized by single-crystal XRD, NMR, Raman, and IR spectroscopy. Interestingly, they show characteristic blueshifts of the vibrational modes of the cage, as well as structural contractions of the cages upon coordination to the Fp/FpPPh3 moieties, which oppose the typically observed cage expansions that lead to redshifts in the spectra. Structure, bonding, and thermodynamics were investigated by DFT calculations, which support the observed cage contractions. Its reason is assigned to σ and π donation from the slightly P−P and P−E antibonding P4E3-cage HOMO (e symmetry) to the metal acceptor fragment.  相似文献   

8.
Schnöckel's [(AlCp*)4] and Jutzi's [SiCp*][B(C6F5)4] (Cp*=C5Me5) are landmarks in modern main-group chemistry with diverse applications in synthesis and catalysis. Despite the isoelectronic relationship between the AlCp* and the [SiCp*]+ fragments, their mutual reactivity is hitherto unknown. Here, we report on their reaction giving the complex salts [Cp*Si(AlCp*)3][WCA] ([WCA]=[Al(ORF)4] and [F{Al(ORF)3}2]; RF=C(CF3)3). The tetrahedral [SiAl3]+ core not only represents a rare example of a low-valent silicon-doped aluminium-cluster, but also—due to its facile accessibility and high stability—provides a convenient preparative entry towards low-valent Si−Al clusters in general. For example, an elusive binuclear [Si2(AlCp*)5]2+ with extremely short Al−Si bonds and a high negative partial charge at the Si atoms was structurally characterised and its bonding situation analysed by DFT. Crystals of the isostructural [Ge2(AlCp*)5]2+ dication were also obtained and represent the first mixed Al−Ge cluster.  相似文献   

9.
The reaction of the Ga+ source [Ga(PhF)2]+[Al(ORF)4]? with the neutral σ‐donor ligand dmap (4‐Me2N‐C6H4N) produces the unexpectedly large and fivefold positively charged cluster cation salt [Ga5(dmap)10]5+([Al(ORF)4]?)5. It includes a regular and planar Ga5 pentagon with strong metal–metal bonding. Additionally, the compound represents the first salt in which an ionic 1:5 packing is realized. We discuss the nature of this structure which results from the conversion of the non‐bonding 4s2 lone‐pair orbitals into fully Ga‐Ga‐bonding orbitals and the solid‐state arrangement of the ions constituting the lattice as an almost orthohexagonal AX5 lattice, possibly the aristotype of any 5:1 salt.  相似文献   

10.
Compounds including the free or coordinated gas‐phase cations [Ag(η2‐C2H4)n]+ (n=1–3) were stabilized with very weakly coordinating anions [A]? (A=Al{OC(CH3)(CF3)2}4, n=1 ( 1 ); Al{OC(H)(CF3)2}4, n=2 ( 3 ); Al{OC(CF3)3}4, n=3 ( 5 ); {(F3C)3CO}3Al‐F‐Al{OC(CF3)3}3, n=3 ( 6 )). They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of ethene in CH2Cl2 solution. As a reference we also prepared the isobutene complex [(Me2C?CH2)Ag(Al{OC(CH3)(CF3)2}4)] ( 2 ). The compounds were characterized by multinuclear solution‐NMR, solid‐state MAS‐NMR, IR and Raman spectroscopy as well as by their single crystal X‐ray structures. MAS‐NMR spectroscopy shows that the [Ag(η2‐C2H4)3]+ cation in its [Al{OC(CF3)3}4]? salt exhibits time‐averaged D3h‐symmetry and freely rotates around its principal z‐axis in the solid state. All routine X‐ray structures (2θmax.<55°) converged within the 3σ limit at C?C double bond lengths that were shorter or similar to that of free ethene. In contrast, the respective Raman active C?C stretching modes indicated red‐shifts of 38 to 45 cm?1, suggesting a slight C?C bond elongation. This mismatch is owed to residual librational motion at 100 K, the temperature of the data collection, as well as the lack of high angular data owing to the anisotropic electron distribution in the ethene molecule. Therefore, a method for the extraction of the C?C distance in [M(C2H4)] complexes from experimental Raman data was developed and meaningful C?C distances were obtained. These spectroscopic C?C distances compare well to newly collected X‐ray data obtained at high resolution (2θmax.=100°) and low temperature (100 K). To complement the experimental data as well as to obtain further insight into bond formation, the complexes with up to three ligands were studied theoretically. The calculations were performed with DFT (BP86/TZVPP, PBE0/TZVPP), MP2/TZVPP and partly CCSD(T)/AUG‐cc‐pVTZ methods. In most cases several isomers were considered. Additionally, [M(C2H4)3] (M=Cu+, Ag+, Au+, Ni0, Pd0, Pt0, Na+) were investigated with AIM theory to substantiate the preference for a planar conformation and to estimate the importance of σ donation and π back donation. Comparing the group 10 and 11 analogues, we find that the lack of π back bonding in the group 11 cations is almost compensated by increased σ donation.  相似文献   

11.
The reaction of CuI, AgI, and AuI salts with carbon monoxide in the presence of weakly coordinating anions led to known and structurally unknown non‐classical coinage metal carbonyl complexes [M(CO)n][A] (A=fluorinated alkoxy aluminates). The coinage metal carbonyl complexes [Cu(CO)n(CH2Cl2)m]+[A]? (n=1, 3; m=4?n), [Au2(CO)2Cl]+[A]?, [(OC)nM(A)] (M=Cu: n=2; Ag: n=1, 2) as well as [(OC)3Cu???ClAl(ORF)3] and [(OC)Au???ClAl(ORF)3] were analyzed with X‐ray diffraction and partially IR and Raman spectroscopy. In addition to these structures, crystallographic and spectroscopic evidence for the existence of the tetracarbonyl complex [Cu(CO)4]+[Al(ORF)4]? (RF=C(CF3)3) is presented; its formation was analyzed with the help of theoretical investigations and Born–Fajans–Haber cycles. We discuss the limits of structure determinations by routine X‐ray diffraction methods with respect to the C? O bond lengths and apply the experimental CO stretching frequencies for the prediction of bond lengths within the carbonyl ligand based on a correlation with calculated data. Moreover, we provide a simple explanation for the reported, partly confusing and scattered CO stretching frequencies of [CuI(CO)n] units.  相似文献   

12.
Upon reacting SeCl4 with Me3Si–F–Al(ORF)3, the selenonium salt SeMeCl2[al‐f‐al] ( 1 ) {[al‐f‐al] = [F[Al(OC(CF3)3)3]2]} was obtained and characterized by NMR, IR, and Raman spectroscopy as well as single crystal XRD experiments. Despite the [SeX3]+ (X = F, Cl, Br, I) and [SeR3]+ salts (R = aliphatic organic residue) being well known and thoroughly studied, the mixed cations are scarce. The only previous example of a salt with the [SeMeCl2]+ cation is SeMeCl2[SbCl6], which was never structurally characterized and is unstable in solution over hours. Only 1H‐NMR studies and IR spectra of this compound are known. The unexpected use of Me3Si–F–Al(ORF)3 as a methylating agent was investigated via DFT calculations and NMR experiments of the reaction solution. The reaction of SeCl3[al‐f‐al] with Me3Si‐Cl at room temperature in CH2Cl2 proved to yield the same product with Me3Si–Cl acting as a methylating agent.  相似文献   

13.
Using [Ga(C6H5F)2]+[Al(ORF)4]?( 1 ) (RF=C(CF3)3) as starting material, we isolated bis‐ and tris‐η6‐coordinated gallium(I) arene complex salts of p‐xylene (1,4‐Me2C6H4), hexamethylbenzene (C6Me6), diphenylethane (PhC2H4Ph), and m‐terphenyl (1,3‐Ph2C6H4): [Ga(1,4‐Me2C6H4)2.5]+ ( 2+ ), [Ga(C6Me6)2]+ ( 3+ ), [Ga(PhC2H4Ph)]+ ( 4+ ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+ ( 52+ ). 4+ is the first structurally characterized ansa‐like bent sandwich chelate of univalent gallium and 52+ the first binuclear gallium(I) complex without a Ga?Ga bond. Beyond confirming the structural findings by multinuclear NMR spectroscopic investigations and density functional calculations (RI‐BP86/SV(P) level), [Ga(PhC2H4Ph)]+[Al(ORF)4]?( 4 ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+{[Al(ORF)4] ?}2 ( 5 ), featuring ansa‐arene ligands, were tested as catalysts for the synthesis of highly reactive polyisobutylene (HR‐PIB). In comparison to the recently published 1 and the [Ga(1,3,5‐Me3C6H3)2]+[Al(ORF)4]? salt ( 6 ) (1,3,5‐Me3C6H3=mesitylene), 4 and 5 gave slightly reduced reactivities. This allowed for favorably increased polymerization temperatures of up to +15 °C, while yielding HR‐PIB with high contents of terminal olefinic double bonds (α‐contents=84–93 %), low molecular weights (Mn=1000–3000 g mol?1) and good monomer conversions (up to 83 % in two hours). While the chelate complexes delivered more favorable results than 1 and 6 , the reaction kinetics resembled and thus concurred with the recently proposed coordinative polymerization mechanism.  相似文献   

14.
Upon reaction of gaseous Me3SiF with the in situ prepared Lewis acid Al(ORF)3, the stable ion‐like silylium compound Me3Si‐F‐Al(ORF)3 1 forms. The Janus‐headed 1 is a readily available smart Lewis acid that differentiates between hard and soft nucleophiles, but also polymerizes isobutene effectively. Thus, in reactions of 1 with soft nucleophiles (Nu), such as phosphanes, the silylium side interacts in an orbital‐controlled manner, with formation of [Me3Si?Nu]+ and the weakly coordinating [F?Al(ORF)3] or [(FRO)3Al‐F‐Al(ORF)3] anions. If exchanged for hard nucleophiles, such as primary alcohols, the aluminum side reacts in a charge‐controlled manner, with release of FSiMe3 gas and formation of the adduct R(H)O?Al(ORF)3. Compound 1 very effectively initiates polymerization of 8 to 21 mL of liquid C4H8 in 50 mL of CH2Cl2 already at temperatures between ?57 and ?30 °C with initiator loads as low as 10 mg in a few seconds with 100 % yield but broad polydispersities.  相似文献   

15.
Attempts to prepare Fe(CO)5+ from Ag[Al(ORF)4] (RF=C(CF3)3) and Fe(CO)5 in CH2Cl2 yielded the first complex of a neutral metal carbonyl bound to a simple metal cation. The Ag[Fe(CO)5]2+ cation consists of two Fe(CO)5 molecules coordinating Ag+ in an almost linear fashion. The ν(CO) modes are blue‐shifted compared to Fe(CO)5, with one band above 2143 cm?1 indicating that back‐bonding is heavily decreased in the Ag[Fe(CO)5]2+ cation.  相似文献   

16.
AlCp*-complexes with transition metals have shown to be highly reactive and enable C–H or Si–H bond activation. Yet, complexes of AlCp* with low-valent main-group metals are scarce. Here, we report the syntheses of [M(AlCp*)3][Al(ORF)4] (RF = C(CF3)3) with M = Ga, In, Tl, which include the first covalent Al–In and Al–Tl bonds. For M = Ga, AlCp*-coordination induced the formation of the dication [Ga2(AlCp*)6]2+ in the solid state, which exhibits a solvent and temperature dependent monomer–dimer equilibrium in solution. By contrast, the In and Tl complexes are monomeric and prone to reduction to the metal by the electron-rich AlCp*-moieties. The QTAIM analysis suggests that the metal centres are already highly reduced in the complexes, while the positive charge is distributed onto the AlCp* units. Addition of Me3TACN (1,4,7-trimethyl-1,4,7-triazacyclononane) to the Ga- and Tl-complex salts resulted in an isomerization to the novel low-valent Al4+ cation [(Me3TACN)Al(AlCp*)3][Al(ORF)4]. Intermittently formed tetrahedral GaAl3+ clusters could be structurally characterized. From a detailed mechanistic study of this isomerization, the very high yield and clean preparation of [(Me3TACN)Al(AlCp*)3][Al(ORF)4] was devised from [M(Me3TACN)][Al(ORF)4] (M = Ga, Tl) and [(AlCp*)4].

Mixed low-valent group 13 cations with formally reduced metal atoms have been prepared via addition of [(AlCp*)4] to the low-valent cation salts of Ga, In and Tl. Addition of an aza-crown ether resulted in isomerization to a novel Al4+ cluster.  相似文献   

17.
The straightforward synthesis of the cationic, purely organometallic NiI salt [Ni(cod)2]+[Al(ORF)4] was realized through a reaction between [Ni(cod)2] and Ag[Al(ORF)4] (cod=1,5‐cyclooctadiene). Crystal‐structure analysis and EPR, XANES, and cyclic voltammetry studies confirmed the presence of a homoleptic NiI olefin complex. Weak interactions between the metal center, the ligands, and the anion provide a good starting material for further cationic NiI complexes.  相似文献   

18.
This work reports the syntheses and the first crystal structures of the cationic carbone adducts [FC(PPh3)2]+ and [BrC(PPh3)2]+ and the protonated dication [FC(H)(PPh3)2]2+, which are derived from the carbone C(PPh3)2. Quantum chemical calculations and bonding analyses were carried out for the series of cations [AC(PPh3)2]+ and dications [AC(H)(PPh3)2]2+, where A=H, Me, F, Cl, Br, I. The bonding analysis suggests that the cations are best described as phosphane complexes L→(CA)+←L (L=PPh3), which are related to the neutral borylene adducts L→(BA)←L (L=cyclic carbene; A=H, aryl) that were recently isolated. The carbone adducts [AC(PPh3)2]+ possess a π electron lone pair at carbon and they can easily be protonated to the dications [AC(H)(PPh3)2]2+. The calculations of the dications indicate that the molecules are best represented as complexes L→(CHA)2+←L (L=PPh3) where a carbene dication is stabilized by the ligands. The central carbon atom in the cations and even in the dications carries a negative partial charge, which is larger than the negative charge at fluorine. There is also the peculiar situation in which the carbon–fluorine bonds in [FC(PPh3)2]+ and [FC(H)(PPh3)2]2+ exhibit the expected polarity with the negative end at fluorine, but the carbon atom has a larger negative charge than fluorine. Given the similarity of carbodiphosphorane C(PPh3)2 and carbodicarbene C(NHC)2, we expect that analogous compounds [AC(NHC)2]+ and [AC(H)(NHC)2]2+ with similar features as [AC(PPh3)2]+ and [AC(H)(PPh3)2]2+ can be isolated.  相似文献   

19.
Salts that contain radical cations of benzidine (BZ), 3,3′,5,5′‐tetramethylbenzidine (TMB), 2,2′,6,6′‐tetraisopropylbenzidine (TPB), and 4,4′‐terphenyldiamine (DATP) have been isolated with weakly coordinating anions [Al(ORF)4]? (ORF=OC(CF3)3) or SbF6?. They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of benzidine or its alkyl‐substituted derivatives in CH2Cl2. The salts were characterized by UV absorption and EPR spectroscopy as well as by their single‐crystal X‐ray structures. Variable‐temperature UV/Vis absorption spectra of BZ . +[Al(ORF)4]? and TMB . +[Al(ORF)4]? in acetonitrile indicate an equilibrium between monomeric free radical cations and a radical‐cation dimer. In contrast, the absorption spectrum of TPB . +SbF6? in acetonitrile indicates that the oxidation of TPB only resulted in a monomeric radical cation. Single‐crystal X‐ray diffraction studies show that in the solid state BZ and its methylation derivative (TMB) form radical‐cation π dimers upon oxidation, whereas that modified with isopropyl groups (TPB) becomes a monomeric free radical cation. By increasing the chain length, π stacks of π dimers are obtained for the radical cation of DATP. The single‐crystal conductivity measurements show that monomerized or π‐dimerized radicals (BZ . +, TMB . +, and TPB . +) are nonconductive, whereas the π‐stacked radical (DATP . +) is conductive. A conduction mechanism between chains through π stacks is proposed.  相似文献   

20.
In an earlier publication (J. Am. Chem. Soc. 2002 , 124, 7111) we showed that polymeric cationic [Ag(P4S3)n]+ complexes (n=1, 2) are accessible if partnered with a suitable weakly coordinating counterion of the type [Al(ORF)4]? (ORF: poly‐ or perfluorinated alkoxide). The present work addresses the following questions that could not be answered in the initial report: How many P4S3 cages can be bound to a Ag+ ion? Why are these complexes completely dynamic in solution in the 31P NMR experiments? Can these dynamics be frozen out in a low‐temperature 31P MAS NMR experiment? What are the principal binding sites of the P4S3 cage towards the Ag+ ion? What are likely other isomers on the [Ag(P4S3)n]+ potential energy surface? Counterion influence: Reactions of P4S3 with Ag[Al{OC(CH3)(CF3)2}4] (Ag[hftb]) and Ag[{(CF3)3CO}3Al‐F‐Al{OC(CF3)3)}3] (Ag[al‐f‐al]) gave [(P4S3)Ag[hftb]] ( 7 ) as a molecular species, whereas [Ag2(P4S3)6]2+[al‐f‐al]?2 ( 8 ) is an isolated 2:1 salt. We suggest that a maximum of three P4S3 cages may be bound on average to an Ag+ ion. Only isolated dimeric dications are formed with the largest cation, but polymeric species are obtained with all other smaller aluminates. Thermodynamic Born–Haber cycles, DFT calculations, as well as solution NMR and ESI mass spectrometry indicate that 8 exhibits an equilibrium between the dication [Ag2(P4S3)6]2+ (in the solid state) and two [Ag(P4S3)3]+ monocations (in the gas phase and in solution). Dynamics: 31P MAS NMR spectroscopy showed these solid adducts to be highly dynamic, to an extent that the 2JP,P coupling within the cages could be resolved (J‐res experiment). This is supported by DFT calculations, which show that the extended PES of [Ag(P4S3)n]+ (n=1–3) and [Ag2(P4S3)2]+ is very flat. The structures of α‐ and γ‐P4S3 were redetermined. Their variable‐temperature 31P MAS NMR spectra are discussed jointly with those of all four currently known [Ag(P4S3)n]+ adducts with n=1, 2, and 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号