首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An sp 2 /sp 3 get‐together : A novel and efficient method can be used to synthesize 3,3‐disubstitued oxindoles by the direct intramolecular oxidative coupling of an aryl C? H and a C? H center (see scheme; DMF=N,N‐dimethylformamide).

  相似文献   


2.
3.
Tuning the nature of the linker in a L∼BHR phosphinoborane compound led to the isolation of a ruthenium complex stabilized by two adjacent, δ‐C H and ε‐Bsp2 H, agostic interactions. Such a unique coordination mode stabilizes a 14‐electron “RuH2P2” fragment through connected σ‐bonds of different polarity, and affords selective B H, C H, and B C bond activation as illustrated by reactivity studies with H2 and boranes.  相似文献   

4.
The addition of NO (0 to 400ppm) to mixtures of H2 (ca. 1%) and O2 (0.7 to 22%) has been studied over the temperature range 700 to 825 K, in a flow reactor at atmospheric pressure. The overall effect of NO is to promote the oxidation of H2 but high concentrations of O2 actually inhibit the NO-promoted oxidation of H2. A detailed kinetic mechanism has been constructed and found to describe the experimental observations. The promotion of the oxidation of H2 arises through the catalytic cycle The ability of R.34 to reactivate chains normally terminated by the formation of HO2 is a key feature of this system. The predictions are highly sensitive to the rate of the reaction R.5 and the rate constants for this reaction is the only adjustable parameter required in the model. The value of k5,N2 found to describe all the results has an absolute uncertainty <35%. The uncertainty relative to other important rate constants in the H2? O2 system is less than 10%. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Described herein is a manganese‐catalyzed dehydrogenative [4+2] annulation of N H imines and alkynes, a reaction providing highly atom‐economical access to diverse isoquinolines. This transformation represents the first example of manganese‐catalyzed C H activation of imines; the stoichiometric variant of the cyclomanganation was reported in 1971. The redox neutral reaction produces H2 as the major byproduct and eliminates the need for any oxidants, external ligands, or additives, thus standing out from known isoquinoline synthesis by transition‐metal‐catalyzed C H activation. Mechanistic studies revealed the five‐membered manganacycle and manganese hydride species as key reaction intermediates in the catalytic cycle.  相似文献   

6.
Correlated ab initio molecular orbital, DFT, QCISD, G3MP2, and QCISD(T) calculations have been used to investigate the geometries, energetics, and mechanisms governing the insertion reactions of 1CH2 into O H and N H bonds of water and ammonia, respectively, in gas phase adopting 6‐311++g(d, p) basis set. It is found that 1CH2 reacts with water and ammonia to produce the ylide‐like intermediates H2C OH2 and H2C NH3, which in turn undergo 1,2‐hydrogen shift to produce methanol and methylamine, respectively. Results obtained indicate that in the gas phase, the ylides and the transition states are located below the reactants' energy levels. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

7.
The transformation of C? H bonds into other chemical bonds is of great significance in synthetic chemistry. C? H bond‐activation processes provide a straightforward and atom‐economic strategy for the construction of complex structures; as such, they have attracted widespread interest over the past decade. As a prevalent directing group in the field of C? H activation, the amide group not only offers excellent regiodirecting ability, but is also a potential C? N bond precursor. As a consequence, a variety of nitrogen‐containing heterocycles have been obtained by using these reactions. This Focus Review addresses the recent research into the amide‐directed tandem C? C/C? N bond‐formation process through C? H activation. The large body of research in this field over the past three years has established it as one of the most‐important topics in organic chemistry.  相似文献   

8.
In hydrogen‐metal‐phosphorus (H M P) transition metal complexes (proposed as intermediates of H P bond addition to alkynes in the catalytic hydrophosphorylation, hydrophosphinylation, and hydrophospination reactions), alkyne insertion into the metal‐hydrogen bond was found much more facile compared to alkyne insertion into the metal‐phosphorus bond. The conclusion was verified for different metals (Pd, Ni, Pt, and Rh), ligands, and phosphorus groups at various theory levels (B3LYP, B3PW91, BLYP, MP2, and ONIOM). The relative reactivity of the metal complexes in the reaction with alkynes was estimated and decreased in the order of Ni>Pd>Rh>Pt. A trend in relative reactivity was established for various types of phosphorus groups: PR2>P(O)R2>P(O)(OR)2, which showed a decrease in rate upon increasing the number of the oxygen atoms attached to the phosphorus center.  相似文献   

9.
A quantum chemical model is introduced to predict the H‐bond donor strength of monofunctional organic compounds from their ground‐state electronic properties. The model covers ? OH, ? NH, and ? CH as H‐bond donor sites and was calibrated with experimental values for the Abraham H‐bond donor strength parameter A using the ab initio and density functional theory levels HF/6‐31G** and B3LYP/6‐31G**. Starting with the Morokuma analysis of hydrogen bonding, the electrostatic (ES), polarizability (PL), and charge transfer (CT) components were quantified employing local molecular parameters. With hydrogen net atomic charges calculated from both natural population analysis and the ES potential scheme, the ES term turned out to provide only marginal contributions to the Abraham parameter A, except for weak hydrogen bonds associated with acidic ? CH sites. Accordingly, A is governed by PL and CT contributions. The PL component was characterized through a new measure of the local molecular hardness at hydrogen, η(H), which in turn was quantified through empirically defined site‐specific effective donor and acceptor energies, EEocc and EEvac. The latter parameter was also used to address the CT contribution to A. With an initial training set of 77 compounds, HF/6‐31G** yielded a squared correlation coefficient, r2, of 0.91. Essentially identical statistics were achieved for a separate test set of 429 compounds and for the recalibrated model when using all 506 compounds. B3LYP/6‐31G** yielded slightly inferior statistics. The discussion includes subset statistics for compounds containing ? OH, ? NH, and active ? CH sites and a nonlinear model extension with slightly improved statistics (r2 = 0.92). © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

10.
The impact of redox non‐innocence (RNI) on chemical reactivity is a forefront theme in coordination chemistry. A diamide diimine ligand, [{‐CHN(1,2‐C6H4)NH(2,6‐iPr2C6H3)}2]n (n=0 to −4), (dadi)n, chelates Cr and Fe to give [(dadi)M] ([ 1 Cr(thf)] and [ 1 Fe]). Calculations show [ 1 Cr(thf)] (and [ 1 Cr]) to have a d4 Cr configuration antiferromagnetically coupled to (dadi)2−*, and [ 1 Fe] to be S=2. Treatment with RN3 provides products where RN is formally inserted into the C C bond of the diimine or into a C H bond of the diimine. Calculations on the process support a mechanism in which a transient imide (imidyl) aziridinates the diimine, which subsequently ring opens.  相似文献   

11.
Copper‐catalyzed Ullmann condensations are key reactions for the formation of carbon–heteroatom and carbon–carbon bonds in organic synthesis. These reactions can lead to structural moieties that are prevalent in building blocks of active molecules in the life sciences and in many material precursors. An increasing number of publications have appeared concerning Ullmann‐type intermolecular reactions for the coupling of aryl and vinyl halides with N, O, and C nucleophiles, and this Minireview highlights recent and major developments in this topic since 2004.  相似文献   

12.
13.
14.
Formation of C C bonds from CO2 is a much sought after reaction in organic synthesis. To date, other than C H carboxylations using stoichiometric amounts of metals, base, or organometallic reagents, little is known about C C bond formation. In fact, to the best of our knowledge no catalytic methylation of C H bonds using CO2 and H2 has been reported. Described herein is the combination of CO2 and H2 for efficient methylation of carbon nucleophiles such as indoles, pyrroles, and electron‐rich arenes. Comparison experiments which employ paraformaldehyde show similar reactivity for the CO2/H2 system.  相似文献   

15.
Attachment of one electron to 1,2-diBeX-benzene and 1,2-diZnX-benzene derivatives leads to the formation of stronger Be Be and Zn Zn interaction compared to the neutral one. This is reflected in the dramatic shortening of the Be Be and Zn Zn distance. The formation of these 2-center-1-electron bonds have also been confirmed by topological survey of electron density using quantum theory of atoms in molecules and electron localization function. The formation of these bonds is expected to render stability to these radical anions. These radical anions are stable toward electron detachment and computed bond dissociation energy values are also significant.  相似文献   

16.
17.
The reactivity of disulfide and diselenide derivatives towards F? and CN? nucleophiles has been investigated by means of B3PW91/6‐311+G(2df,p) calculations. This theoretical survey shows that these processes, in contrast with the generally accepted view of disulfide and diselenide linkages, do not always lead to S? S or Se? Se bond cleavage. In fact, S? S or Se? Se bond fission is the most favorable process only when the substituents attached to the S or the Se atoms are not very electronegative. Highly electronegative substituents (X) strongly favor S? X bond fission. This significant difference in the observed reactivity patterns is directly related to the change in the nature of the LUMO orbital of the disulfide or diselenide derivative as the electronegativity of the substituents increases. For weakly electronegative substituents, the LUMO is a σ‐type S? S (or Se? Se) antibonding orbital, but as the electronegativity of the substituents increases the π‐type S? X antibonding orbital stabilizes and becomes the LUMO. The observed reactivity also changes with the nature of the nucleophile and with the S or Se atom that undergoes the nucleophilic attack in asymmetric disulfides and diselenides. The activation strain model provides interesting insights into these processes. There are significant similarities between the reactivity of disulfides and diselenides, although some dissimilarities are also observed, usually related to the different interaction energies between the fragments produced in the fragmentation process.  相似文献   

18.
A simple method to convert readily available carboxylic acids into sulfinate salts by employing an interrupted Barton decarboxylation reaction is reported. A medicinally oriented panel of ten new sulfinate reagents was created using this method, including a key trifluoromethylcyclopropanation reagent, TFCS‐Na. The reactivity of six of these salts towards C H functionalization was field‐tested using several different classes of heterocycles.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号