首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The total syntheses of (+)-polygalolide?A and (+)-polygalolide?B have been completed by using a carbonyl ylide cycloaddition strategy. Three of the four stereocenters, including two consecutive tetrasubstituted carbon atoms at C2 and C8, were incorporated through internal asymmetric induction from the stereocenter at C7 by a [Rh(2) (OAc)(4)]-catalyzed carbonyl ylide formation/intramolecular 1,3-dipolar cycloaddition sequence. The arylmethylidene moiety of these natural products was successfully installed by a Mukaiyama aldol-type reaction of a silyl enol ether with a dimethyl acetal, followed by elimination under basic conditions. We have also developed an alternative approach to the carbonyl ylide precursor based on a hetero-Michael reaction. This approach requires 18 steps, and the natural products were obtained in 9.8 and 9.3?% overall yields. Comparison of specific rotations of the synthetic materials and natural products suggests that polygalolides are biosynthesized in nearly racemic forms through a [5+2] cycloaddition between a fructose-derived oxypyrylium zwitterion with an isoprene derivative.  相似文献   

2.
The [3+2] cycloaddition reaction of a tungsten‐containing carbonyl ylide with methyl vinyl ether and the insertion reactions of the nonstabilized carbene complex intermediates produced have been investigated through the use of B3LYP density functional theory. The [3+2] cycloaddition reaction of the tungsten‐containing carbonyl ylide has been proven to proceed concertedly, reversibly, and with high endo selectivity. The intermolecular Si? H insertion reactions of the carbene complex intermediates have been proven to be favored over the intramolecular C? H insertion, in good agreement with experimental results. Moreover, the kinetic endo/exo ratio of the [3+2] cycloaddition reaction has been shown to determine the endo/exo selectivity of the Si? H insertion products. In addition, secondary orbital interactions involving the benzene ring and the carbonyl ligand on the metal center have turned out to strongly influence the high endo selectivity of the [3+2] cycloaddition reaction with methyl vinyl ether.  相似文献   

3.
Highly selective divergent cycloaddition reactions of enoldiazo compounds and α‐diazocarboximides catalyzed by copper(I) or dirhodium(II) have been developed. With tetrakis(acetonitrile)copper(I) tetrafluoroborate as the catalyst epoxypyrrolo[1,2‐a]azepine derivatives were prepared in good yields and excellent diastereoselectivities through the first reported [3+3]‐cycloaddition of a carbonyl ylide. Use of Rh2(pfb)4 or Rh2(esp)2 directs the reactants to regioselective [3+2]‐cycloaddition generating cyclopenta[2,3]pyrrolo[2,1‐b]oxazoles with good yields and excellent diastereoselectivities.  相似文献   

4.
A cobalt(I)‐mediated convergent and asymmetric total synthesis of angucyclinones with an aromatic B ring has been developed. In the course of our research, we synthesized three naturally occurring anguclinone derivatives, namely, (+)‐rubiginone B2 ( 1 ), (?)‐8‐O‐methyltetrangomycin ( 2 ), and (?)‐tetrangomycin ( 3 ). By combining 3‐hydroxybenzoic acid, 3‐methoxybenzoic acid, citronellal, and geraniol as starting materials in a convergent way, we were able to synthesize chiral triyne chains, which were cyclized with [CpCo(C2H4)2] (Cp=cyclopentadienyl) by means of an intramolecular [2+2+2] cycloaddition to their corresponding tetrahydrobenzo[a]anthracenes. Successive oxidation and deprotection steps led to the above‐mentioned natural products 1 – 3 .  相似文献   

5.
An asymmetric total synthesis of the guaiane sesquiterpene (?)‐englerin A, a potent and selective inhibitor of the growth of renal cancer cell lines, was accomplished. The basis of the approach is a highly diastereo‐ and enantioselective carbonyl ylide cycloaddition with an ethyl vinyl ether dipolarophile under catalysis by dirhodium(II) tetrakis[N‐tetrachlorophthaloyl‐(S)‐tert‐leucinate], [Rh2(S‐TCPTTL)4], to construct the oxabicyclo[3.2.1]octane framework with concomitant introduction of the oxygen substituent at C9 on the exo‐face. Another notable feature of the synthesis is ruthenium tetraoxide‐catalyzed chemoselective oxidative conversion of C9 ethyl ether to C9 acetate.  相似文献   

6.
Enantioselective total syntheses of the Kopsia alkaloids (+)‐grandilodine C and (+)‐lapidilectine B were accomplished. A key intermediate, spirodiketone, was synthesized in 3 steps and converted into the chiral enone by enantioselective deprotonation followed by oxidation with up to 76 % ee. Lactone formation was achieved through stereoselective vinylation followed by allylation and ozonolysis. The total synthesis of (+)‐grandilodine C was achieved by palladium‐catalyzed intramolecular allylic amination and ring‐closing metathesis to give 8‐ and 5‐membered heterocycles, respectively. Selective reduction of a lactam carbonyl gave (+)‐lapidilectine B. The absolute stereochemistry of both natural products was thereby confirmed. These syntheses enable the scalable preparation of the above alkaloids for biological studies.  相似文献   

7.
The reactions of aryl (selenophen‐2‐yl) thioketones with CH2N2 occur with spontaneous elimination of N2, even at low temperature (?65°), to give regioselectively sterically crowded 4,4,5,5‐tetrasubstituted 1,3‐dithiolanes and/or a novel type of twelve‐membered dithia‐diselena heterocycles as dimers of the transient thiocarbonyl S‐methanides. The ratio of these products depends on the type of substituent located at C(4) of the phenyl ring. Whereas the formation of the 1,3‐dithiolanes corresponds to a [3+2] cycloaddition of an intermediate thiocarbonyl ylide with the starting thioketone, the twelve‐memberd ring has to be formed via dimerization of the ‘thiocarbonyl ylide’ with an extended biradical structure.  相似文献   

8.
It has been shown previously that the reaction of diazomethane with 5‐benzylidene‐3‐phenylrhodanine ( 1 ) in THF at ?20° occurs at the exocyclic C?C bond via cyclopropanation to give 3a and methylation to yield 4 , respectively, whereas the corresponding reaction with phenyldiazomethane in toluene at 0° leads to the cyclopropane derivative 3b exclusively. Surprisingly, under similar conditions, no reaction was observed between 1 and diphenyldiazomethane, but the 2‐diphenylmethylidene derivative 5 was formed in boiling toluene. In the present study, these results have been rationalized by calculations at the DFT B3LYP/6‐31G(d) level using PCM solvent model. In the case of diazomethane, the formation of 3a occurs via initial Michael addition, whereas 4 is formed via [3+2] cycloaddition followed by N2 elimination and H‐migration. The preferred pathway of the reaction of 1 with phenyldiazomethane is a [3+2] cycloaddition, subsequent N2 elimination and ring closure of an intermediate zwitterion to give 3b . Finally, the calculations show that the energetically most favorable reaction of 1 with diphenyldiazomethane is the initial formation of diphenylcarbene, which adds to the S‐atom to give a thiocarbonyl ylide, followed by 1,3‐dipolar electrocyclization and S‐elimination.  相似文献   

9.
We present a full account of the development of a strategy that culminated in the first total syntheses of the unique oxetane‐containing natural product (+)‐dictyoxetane and the macrocyclic diterpene (+)‐dolabellane V. Our retrosynthetic planning was guided by both classical and nonconventional strategies to construct the oxetane, which is embedded in an unprecedented 2,7‐dioxatricyclo[4.2.1.03,8]nonane ring system. Highlights of the successful approach include highly diastereoselective carbonyl addition reactions to assemble the full carbon skeleton, a Grob fragmentation to construct the 11‐membered macrocycle of (+)‐dolabellane V, and a bioinspired 4‐exo‐tet, 5‐exo‐trig cyclization sequence to form the complex dioxatricyclic framework of (+)‐dictyoxetane. Furthermore, an unprecedented strain‐releasing type I dyotropic rearrangement of an epoxide‐oxetane substrate was developed.  相似文献   

10.
The total synthesis of polygalolide A, a secondary metabolite that was isolated from a Chinese medicinal plant, is reported. A key issue in this synthesis was construction of an oxabicyclo[3.2.1] skeleton, which was solved by the development of an intramolecular Ferrier‐type C‐glycosylation of a glucal with siloxyfuran as an internal nucleophile. The substrate was prepared from D ‐glucal by the introduction of trimethylsilylacetylene and siloxyfuran groups. Although C‐glycosylation did not occur under the conditions found from model experiments, further examination revealed that the combination of trimethylsilyl trifluoromethanesulfonate (TMSOTf) and 2,4,6‐collidine successfully afforded the desired product as a single diastereomer. The siloxy group at the C3 position played a crucial role in the stereocontrol of this reaction. The product was further transformed into a tetracyclic compound as follows: The vinyl ether and acetylenic moieties were reduced and the siloxy group was removed with a Barton–McCombie reaction. The construction of the six‐membered ether and the γ‐lactone provided the tetracyclic compound. Finally, a phenolic moiety was introduced by using a Mukaiyama aldol reaction to furnish polygalolide A.  相似文献   

11.
The reactions of 5‐benzylidene‐3‐phenylrhodanine ( 2 ; rhodanine=2‐thioxo‐1,3‐thiazolidin‐4‐one) with diazomethane ( 7a ) and phenyldiazomethane ( 7b ) occurred chemoselectively at the exocyclic C?C bond to give the spirocyclopropane derivatives 9 and, in the case of 7a , also the C‐methylated products 8 (Scheme 1). In contrast, diphenyldiazomethane ( 7c ) reacted exclusively with the C?S group leading to the 2‐(diphenylmethylidene)‐1,3‐thiazolidine 11 via [2+3] cycloaddition and a ‘two‐fold extrusion reaction’. Treatment of 8 or 9b with an excess of 7a in refluxing CH2Cl2 and in THF at room temperature in the presence of [Rh2(OAc)4], respectively, led to the 1,3‐thiazolidine‐2,4‐diones 15 and 20 , respectively, i.e., the products of the hydrolysis of the intermediate thiocarbonyl ylide. On the other hand, the reactions with 7b and 7c in boiling toluene yielded the corresponding 2‐methylidene derivatives 16, 21a , and 21b . Finally, the reaction of 11 with 7a occurred exclusively at the electron‐poor C?C bond, which is conjugated with the C?O group. In addition to the spirocyclopropane 23 , the C‐methylated 22 was formed as a minor product. The structures of the products (Z)‐ 8, 9a, 9b, 11 , and 23 were established by X‐ray crystallography.  相似文献   

12.
The first and enantioselective total synthesis of (+)‐plumisclerin A, a novel unique complex cytotoxic marine diterpenoid, has been accomplished. Around the central cyclopentane anchorage, a sequential ring‐formation protocol was adopted to generate the characteristic tricycle[4.3.1.01,5]decane and trans‐fused dihyrdopyran moiety. Scalable enantioselective LaIII‐catalyzed Michael reaction, palladium(0)‐catalyzed carbonylation and SmI2‐mediated radical conjugate addition were successfully applied in the synthesis, affording multiple grams of the complex and rigid B/C/D‐ring system having six continuous stereogenic centers and two all‐carbon quaternary centers. The trans‐fused dihyrdopyran moiety with an exo side‐chain was furnished in final stage through sequential redox transformations from a lactone precursor, which overcome the largish steric strain of the dense multiring system. The reported total synthesis also confirms the absolute chemistries of natural (+)‐plumisclerin A.  相似文献   

13.
A Bu3P‐mediated cyclization reaction of 3‐cinnamoyl‐4‐hydroxy‐2H‐chromen‐2‐ones though electrophilic addition of acyl chlorides towards the synthesis of highly functionalized furo[3,2‐c]coumarins bearing a phosphorus ylide moiety is described. These unprecedented cyclization reaction proceeds under mild reaction conditions within short reaction times (1 min to 1 h), and can be further applied in the synthesis of alkenyl‐substituted furo[3,2‐c]coumarins by the treatment with carbonyl electrophiles under basic conditions.  相似文献   

14.
Total synthesis of (±)‐Englerin A has been achieved starting from γ,δ‐ynone 5 in 14 steps. The key feature of this synthesis is the highly efficient and stereoselective preparation of 8‐oxabicyclo[3.2.1]octane derivative 6 , a core skeleton of Englerin A, based on an inverse electron‐demand [3+2] cycloaddition reaction of the platinum‐containing carbonyl ylide, which was developed in our laboratory.  相似文献   

15.
A concise and enantioselective total synthesis of (+)‐jungermatrobrunin A ( 1 ), which features a unique bicyclo[3.2.1]octene ring skeleton with an unprecedented peroxide bridge, was accomplished in 13 steps by making use of a late‐stage visible‐light‐mediated Schenck ene reaction of (?)‐1α,6α‐diacetoxyjungermannenone C ( 2 ). Along the way, a UV‐light‐induced bicyclo[3.2.1]octene ring rearrangement afforded (+)‐12‐hydroxy‐1α,6α‐diacetoxy‐ent‐kaura‐9(11),16‐dien‐15‐one ( 4 ). These divergent photo‐induced skeletal rearrangements support a possible biogenetic relationship between (+)‐ 1 , (?)‐ 2 , and (+)‐ 4 .  相似文献   

16.
The reaction of ester‐stabilized sulfonium ylides with cyclopentenone to give (+)‐ 5 ((1S,5R,6S)‐ethyl 2‐oxobicyclo[3.1.0]hexane‐6‐carboxylate), an important precursor to the pharmacologically important compound (+)‐LY354740, has been studied using chiral sulfides operating in both catalytic (sulfide, Cu(acac)2, ethyl diazoacetate, 60 °C) and stoichiometric modes (sulfonium salt, base, room temperature). It was found that the reaction conditions employed had a major influence over both diastereo‐ and enantioselectivity. Under catalytic conditions, good enantioselectivity with low diastereoselectivity was observed, but under stoichiometric conditions low enantioselectivity with high diastereoselectivity was observed. When the stoichiometric reactions were conducted at high dilution, diastereoselectivity was reduced. This indicated that base‐mediated betaine equilibration was occurring (which is slow relative to ring closure at high dilution). Based on this model, conditions for achieving high enantioselectivity were established as follows: use of a preformed ylide, absence of base, hindered ester (to reduce ylide‐mediated betaine equilibration), and low concentration. Under these conditions high enantioselectivity (95 % ee) was achieved, albeit with low diastereocontrol. Our model for selectivity has been applied to other sulfonium ylide mediated cyclopropanation reactions and successfully accounts for the diastereoselectivity observed in all such reported reactions to date.  相似文献   

17.
We have developed the first intermolecular hetero‐[5+2] cycloaddition reaction between oxidopyrylium ylides and cyclic imines with excellent control of regio‐ and stereoselectivity. Surprisingly, divergent stereochemistry was observed depending on the substitution pattern of the oxidopyrylium ylide. This new reaction provides quick access to highly substituted nitrogen‐containing seven‐membered rings—azepanes. Notably, a broad range of oxidopyrylium ylides and cyclic imines participate in this novel hetero‐[5+2] cycloaddition reaction and the cycloadducts can be readily transformed into the core skeletons of bioactive natural products. DFT calculations revealed that the cycloaddition proceeds through a stepwise pathway and the imine nitrogen atom serves as the nucleophile to initiate the cycloaddition.  相似文献   

18.
Ni0‐catalyzed chemo‐ and enantioselective [3+2] cycloaddition of cyclopropenones and α,β‐unsaturated ketones/imines is described. This reaction integrates C?C bond cleavage of cyclopropenones and enantioselective functionalization by carbonyl/imine group, offering a mild approach to γ‐alkenyl butenolides and lactams in excellent enantioselectivity (88–98 % ee) through intermolecular C?C activation.  相似文献   

19.
A catalytic asymmetric formal [3+3] cycloaddition of 3‐indolylmethanol and an in situ‐generated azomethine ylide has been established to construct a chiral six‐membered piperidine framework with two stereogenic centers. This approach not only represents the first enantioselective cycloaddition of isatin‐derived 3‐indolylmethanol, but also has realized an unusual enantioselective formal [3+3] cycloaddition of azomethine ylide rather than its common [3+2] cycloadditions. Besides, this protocol combines the merits of a multicomponent reaction and organocatalysis, which efficiently assembles a variety of isatin‐derived 3‐indolylmethanols, aldehydes, and amino esters into structurally diverse spiro[indoline‐3,4′‐pyridoindoles] with one all‐carbon quaternary stereogenic center in high yields and excellent enantioselectivities (up to 93 % yield, >99 % enantiomeric excess (ee)). Although the diastereoselectivity of the reaction is generally moderate, most of the diastereomers can be separated by using column chromatography followed by preparative TLC.  相似文献   

20.
The first total synthesis of the architecturally complex hetisine‐type heptacyclic C20‐diterpenoid alkaloids (±)‐spirasine IV and XI is reported. The A/F/G/C tetracyclic skeleton with the challenging N?C6 and C14?C20 linkages was efficiently constructed by an intramolecular azomethine‐ylide‐based 1,3‐dipolar cycloaddition with unusual regioselectivity. SmI2‐mediated free‐radical addition to the arene moiety without prior dearomatization and a stereoselective intramolecular aldol reaction further enabled rapid access to the hetisine core, providing a bicyclo[2.2.2]octane ring with a new oxygen substitution pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号