首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of optically active helical polyphosphazene block copolymers of general formula R? [N?P(O2C20H12)]nb‐[N?PMePh]m (R‐ 7 a – c ) was synthesized and characterized. The polymers were prepared by sequential living cationic polycondensation of N‐silylphosphoranimines using the mono‐end‐capped initiator [Ph3P?N?PCl3][PCl6] ( 5 ) and exhibit a low polydispersity index (ca. 1.3). The temperature dependence of the specific optical activity ([α]D) of R‐ 7 a , b relative to that for the homopolymers R‐[N?P(O2C20H12)]n (R‐ 8 a ) and the R/S analogues (R/S‐ 7 a , b ), revealed that the binaphthoxy–phosphazene segments induce a preferential helical conformation in the [N?PMePh] blocks through a “sergeant‐and‐soldiers” mechanism, an effect that is unprecedented in polyphosphazenes. The self‐assembly of drop‐cast thin films of the chiral block copolymer R‐ 7 b (bearing a long chiral and rigid R? [N?P(O2C20H12)] segment) evidenced a transfer of helicity mechanism, leading to the formation of twisted morphologies (twisted “pearl necklace”), not observed in the nonchiral R/S‐ 7 b . The chiral R‐ 7 a and the nonchiral R/S‐ 7 a , self‐assemble by a nondirected morphology reconstruction process into regular‐shaped macroporous films with chiral‐rich areas close to edge of the pore. This is the first nontemplate self‐assembly route to chiral macroporous polymeric films with pore size larger than 50 nm. The solvent annealing (THF) of these films leads to the formation of regular spherical nanostructures (ca. 50 nm), a rare example of nanospheres exclusively formed by synthetic helical polymers.  相似文献   

2.
Control of the self‐assembly of small molecules to generate architectures with diverse shapes and dimensions is a challenging research field. We report unprecedented results on the ability of ionic, bent dendritic molecules to aggregate in water. A range of analytical techniques (TEM, SEM, SAED, and XRD) provide evidence of the formation of rods, spheres, fibers, helical ribbons, or tubules from achiral molecules. The compact packing of the bent‐core structures, which promotes the bent‐core mesophases, also occurs in the presence of a poor solvent to provide products ranging from single objects to supramolecular gels. The subtle balance of molecule/solvent interactions and appropriate molecular designs also allows the transfer of molecular conformational chirality to morphological chirality in the overall superstructure. Functional motifs and controlled morphologies can be combined, thereby opening up new prospects for the generation of nanostructured materials through a bottom‐up strategy.  相似文献   

3.
Reported is the ability of α‐helical polypeptides to self‐assemble with oppositely‐charged polypeptides to form liquid complexes while maintaining their α‐helical secondary structure. Coupling the α‐helical polypeptide to a neutral, hydrophilic polymer and subsequent complexation enables the formation of nanoscale coacervate‐core micelles. While previous reports on polypeptide complexation demonstrated a critical dependence of the nature of the complex (liquid versus solid) on chirality, the α‐helical structure of the positively charged polypeptide prevents the formation of β‐sheets, which would otherwise drive the assembly into a solid state, thereby, enabling coacervate formation between two chiral components. The higher charge density of the assembly, a result of the folding of the α‐helical polypeptide, provides enhanced resistance to salts known to inhibit polypeptide complexation. The unique combination of properties of these materials can enhance the known potential of fluid polypeptide complexes for delivery of biologically relevant molecules.  相似文献   

4.
A chiral perylene diimide building block has been prepared based on an amine derivative of the amino acid L ‐phenylalanine. Detailed studies were carried out into the self‐assembly behaviour of the material in solution and the solid state using UV/Vis, circular dichroism (CD) and fluorescence spectroscopy. For the charged building block BTPPP, the molecular chirality of the side chains is translated into the chiral supramolecular structure in the form of right‐handed helical aggregates in aqueous solution. Temperature‐dependent UV/Vis studies of BTPPP in aqueous solution showed that the self‐assembly behaviour of this dye can be well described by an isodesmic model in which aggregation occurs to generate short stacks in a reversible manner. Wide‐angle X‐ray diffraction studies (WXRD) revealed that this material self‐organises into aggregates with π–π stacking distances typical for π‐conjugated materials. TEM investigations revealed the formation of self‐assembled structures of low order and with no expression of chirality evident. Differential scanning calorimetry (DSC) and polarised optical microscopy (POM) were used to investigate the mesophase properties. Optical textures representative of columnar liquid–crystalline phases were observed for solvent‐annealed samples of BTPPP. The high solubility, tunable self‐assembly and chiral ordering of these materials demonstrate their potential as new molecular building blocks for use in the construction of chiro‐optical structures and devices.  相似文献   

5.
6.
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly.  相似文献   

7.
The twisting of supramolecular aggregates formed from simple linear bis(benzamides) has been investigated. The antiparallel arrangement of the amide functional groups controls the generation of twisted supramolecular structures. The results presented herein could contribute to elaborate predictive tools applicable in the generation of chiral supramolecular structures.  相似文献   

8.
9.
10.
New advances into the chirality effect in the self‐assembly of block copolymers (BCPs) have been achieved by tuning the helicity of the chiral‐core‐forming blocks. The chiral BCPs {[N?P(R)‐O2C20H12]200?x[N?P(OC5H4N)2]x}‐b‐ [N?PMePh]50 ((R)‐O2C20H12=(R)‐1,1′‐binaphthyl‐2,2′‐dioxy, OC5H4N=4‐pyridinoxy (OPy); x=10, 30, 60, 100 for 3 a – d , respectively), in which the [N?P(OPy)2] units are randomly distributed within the chiral block, have been synthesised. The chiroptical properties of the BCPs ([α]D vs. T and CD) demonstrated that the helicity of the BCP chains may be simply controlled by the relative proportion of the chiral and achiral (i.e., [N?P(R)‐O2C20H12] and [N?P(OPy)2], respectively) units. Thus, although 3 a only contained only 5 % [N?P(OPy)2] units and exhibited a preferential helical sense, 3 d with 50 % of this unit adopted non‐preferred helical conformations. This gradual variation of the helicity allowed us to examine the chirality effect on the self‐assembly of chiral and helical BCPs (i.e., 3 a – c ) and chiral but non‐helical BCPs (i.e., 3 d ). The very significant influence of the helicity on the self‐assembly of these materials resulted in a variety of morphologies that extend from helical nanostructures to pearl‐necklace aggregates and nanospheres (i.e., 3 b and 3 d , respectively). We also demonstrate that the presence of pyridine moieties in BCPs 3 a – d allows specific decoration with gold nanoparticles.  相似文献   

11.
12.
The helical organization of oligo‐p‐phenylene‐based organogelators has been investigated by atomic force microscopy, circular and vibrational circular dichroism, and Raman techniques. Whilst OPPs with more than two phenyl rings in the core self‐assemble into left‐handed helices, that with a biphenyl core shows an inversion of the supramolecular helicity depending on the formation conditions through the atropisomerism of the biphenyl central unit. The results presented herein outline a new example of kinetically controlled modulation of supramolecular helicity.  相似文献   

13.
A chiral bisurea‐based superhydrogelator that is capable of forming supramolecular hydrogels at concentrations as low as 0.2 mM is reported. This soft material has been characterized by thermal studies, rheology, X‐ray diffraction analysis, transmission electron microscopy (TEM), and by various spectroscopic techniques (electronic and vibrational circular dichroism and by FTIR and Raman spectroscopy). The expression of chirality on the molecular and supramolecular levels has been studied and a clear amplification of its chirality into the achiral analogue has been observed. Furthermore, thermal analysis showed that the hydrogelation of compound 1 has a high response to temperature, which corresponds to an enthalpy‐driven self‐assembly process. These particular thermal characteristics make these materials easy to handle for soft‐application technologies.  相似文献   

14.
15.
A DNA‐based covalent versus a non‐covalent approach is demonstrated to control the optical, chirooptical and higher order structures of Nile red ( Nr ) aggregation. Dynamic light scattering and TEM studies revealed that in aqueous media Nr ‐modified 2′‐deoxyuridine aggregates through the co‐operative effect of various non‐covalent interactions including the hydrogen bonding ability of the nucleoside and sugar moieties and the π‐stacking tendency of the highly hydrophobic dye. This results in the formation of optically active nanovesicles. A left‐handed helically twisted H‐type packing of the dye is observed in the bilayer of the vesicle as evidenced from the optical and chirooptical studies. On the other hand, a left‐handed helically twisted J‐type packing in vesicles was obtained from a non‐polar solvent (toluene). Even though the primary stacking interaction of the dye aggregates transformed from H→J while going from aqueous to non‐polar media, the induced supramolecular chirality of the aggregates remained the same (left‐handed). Circular dichroism studies of DNA that contained several synthetically incorporated and covalently attached Nr ‐modified nucleosides revealed the formation of helically stacked H‐aggregates of Nr but—in comparison to the noncovalent aggregates—an inversed chirality (right‐handed). This self‐assembly propensity difference can, in principle, be applied to other hydrophobic dyes and chromophores and thus open a DNA‐based approach to modulate the primary stacking interactions and supramolecular chirality of dye aggregates.  相似文献   

16.
With different scales of chirality, chiral materials have various particular properties and potential applications in many fields. Peptides are the fundamental building units of biological systems, and a variety of ordered functional nanostructures are produced through self‐assembly and biomineralization of peptides in nature. This Personal Account describes chiral silica materials fabricated by using amphiphilic peptides as building blocks. Three particular biomineralization approaches are described based on different kinds of geometry of amphiphilic peptides: the influence of the specific amino acid proline in the peptide sequence, the hydrophilicity of amphiphilic peptides, and different kinds of hydrophobic tails in amphiphilic peptides. These strategies are useful for designing peptides toward the bottom‐up synthesis of nanomaterials as well as improving the understanding of the mechanism of peptide self‐assembly.  相似文献   

17.
Herein we report on structural, morphological, and optical properties of homochiral and heterochiral J‐aggregates that were created by nucleation–elongation assembly of atropo‐enantiomerically pure and racemic perylene bisimides (PBIs), respectively. Our detailed studies with conformationally stable biphenoxy‐bridged chiral PBIs by UV/Vis absorption, circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM) revealed structurally as well as spectroscopically quite different kinds of J‐aggregates for enantiomerically pure and racemic PBIs. AFM investigations showed that enantiopure PBIs form helical nanowires of unique diameter and large length‐to‐width ratio by self‐recognition, while racemic PBIs provide irregular‐sized particles by self‐discrimination of the enantiomers at the stage of nucleation. Steady‐state fluorescence spectroscopy studies revealed that the photoluminescence efficiency of homochiral J‐aggregated nanowires (47±3 %) is significantly higher than that of heterochiral J‐aggregated particle‐like aggregates (12±3 %), which is explained in terms of highly ordered molecular stacking in one‐dimensional nanowires of homochiral J‐aggregates. Our present results demonstrate the high impact of homochirality on the construction of well‐defined nanostructures with unique optical properties.  相似文献   

18.
Polyoxometalate (POM) complex (DODA)2[Mo6O19] with a symmetrical linear structure was prepared conveniently by replacing the tetrabutylammonium (TBA) counterions of Lindquist‐type cluster (TBA)2[Mo6O19] with cationic surfactant dioctadecyldimethylammonium (DODA). A helical self‐assembled structure of the complex was formed in dichloromethane/propanol. The dynamically reversible transformation between helical and spherical assemblies on alternate UV irradiation and H2O2 oxidation was characterized by SEM, TEM, and UV/Vis studies. The redox‐controlled morphology change is modulated by variation of the electrostatic interactions between the inorganic polyanion and the organic cation DODA through controlling the redox properties of the POM component, as shown by the XRD, X‐ray photoelectron spectroscopic, and 1H NMR measurements. The strategy applied herein is a unique example of targeted smart and helical assembly of POM complexes.  相似文献   

19.
Come together : A novel method for assembling monomers and controlling structure of a de novo helix bundle protein is described. A guanine (G)‐rich oligodeoxynucleotide scaffold forms a hydrogen‐bonded DNA quadruplex in the presence of potassium counterions, thereby inducing a helical structure and fourfold stoichiometry in conjugated, amphiphilic peptide sequences. The DNA scaffold shows potential for rapidly assembling designed proteins.

  相似文献   


20.
On a roll : Attachment of flexible coils to the middle of a rigid rod generates T‐shaped rod–coil molecules that self‐assemble into layers that roll up to form filled cylindrical and hollow tubular scrolls, depending on the coil length, in the solid state (see picture); the rods are arranged parallel to the layer plane.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号